

EFFDOC-1318

Status of ³⁹K(n,p)³⁹Ar and ³⁹K(n,np)³⁸Ar Cross Sections and Impact on IFMIF or DONES Design

S.P. Simakov, Y. Qiu, U. Fischer

INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR)

Motivations:

in IFMIF or DONES projects, the HFTM rigs with test specimens were supposed to be filled by eutectic NaK to take out a heat due to its favourable properties:

- low melting temperature $= -12.6^{\circ}C$,
- low mass density = 0.86 g/cc,
- high thermal conductivity = 0.22 W/cm/°C

under the intensive neutron irradiation the constituent elements/isotopes of NaK (²³Na - 100%, ³⁹K - 93.26%, ⁴¹K - 6.73%) will be transmuted in other stable or radioactive isotopes

neutronics analysis shown that ³⁹Ar ($T_{1/2} = 269 y$) makes dominant contribution to long-lived radioactive inventories produced in NaK,

i.e. via reaction ³⁹K(n,p)³⁹Ar

for design it is crucial to know the **total amount of Ar gas** transmuted from K, i.e. via reaction ³⁹K(n,np)³⁸Ar (*stable*)

Goals of this presentation:

- Status/Uncertainties of Experimental/Evaluated cross sections for these reactions
- if they differ, then to assess an impact on IFMIF/DONES neutronics results

Experimental and Evaluated Cross Sections for reactions ³⁹K(n,p)³⁹Ar and ³⁹K(n,np)³⁸Ar

Impact on IFMIF and DONES Design

Layout of HFTM with 24 <u>sealed</u> Rigs containing the Testing Specimens (Steel) and NaK which conducts the Nuclear Heat to He gas flowing between Rigs

Impact on IFMIF and DONES Design (*cont.***): Neutronics**

Inventory of ³⁹Ar produced by ³⁹K(n,p)³⁹Ar in HFTM/DONES (40MeV@125mA)

Central Rig (MCNP cell 35291)	JEFF-3.2 or FENDL-3.1b	TENDL-2015	ENDF/B-VII.1	EAF-2010 or FENDL/A-3.0
³⁹ Ar generation, atom/cc/fpy	2.743 E+19	2.942 E+19	5.026 E+19	10.97 E+19
³⁹ Ar activity, Bq/cc	2.239 E+9	2.401 E+9	4.103 E+9	8.955 E+9
Ratio to TENDL 2015	0.93	1.00	1.71	3.73

Total Argon (³⁸Ar+³⁹Ar) generation in central rig of HFTM/DONES(40MeV@125mA)

24 rigs of HFTM	JEFF-3.2 or FENDL-3.1b	TENDL-2015	ENDF/B-VII.1	EAF-2010 or FENDL/A-3.0
Ar generation, atoms/fpy	2.134 E+22	2.442 E+22	2.356 E+22	5.644 E+22
Ratio to TENDL 2015	0.87	1.00	0.96	2.31

Inventory of radioactive ³⁹Ar (relying on TENDL-2015 as seems to be the most reasonable): = $(2.9 \pm 10\%)10^{19}$ atoms/cc/fpy or $(2.4 \pm 10\%)10^{9}$ Bq/cc/fpy in central rig of DONES

Total Ar gas generation from K (practically library independent, except EAF-2010=FENDL/A-3.0, but still relying on TENDL-2015):

= (2.4 ± 15%)10²² Ar atoms/fpy in 24 rigs = 0.040 moles = 0.90 litres at normal T and P (this rate is considered to be too large for the sealed rigs !!! – as designers tell us ...)

Summary

I. Nuclear Data

Existing Measured XS for ³⁹K(n,p)³⁹Ar and ³⁹K(n,np)³⁸Ar reactions are controversy:

- 3 measurements performed at 14 MeV so far by p-spectroscopy and activation differ 3 times from 1 measurement which used AMS
- no experimental data do exist at higher energies
- Thus we recommend additional measurements to solve contradiction at 14 MeV and to obtain data at higher energies

Current Evaluations for these reactions:

- TENDL-2015 looks as most physical (JEFF-3.2 = FENDL-3.1b are similar)
- ENDF/B-VII.1, EAF-2010 and FENDL/A-3.0 are out of trend (since EAF-2010 is underlying library for FISPACT and FENDL/A-3.0 is a reference activation library for fusion, they have to be cautiously used for Ar inventory calculations)

II. Argon radioactive and total inventories due to neutron reactions with K

- long term (≈ 300 y) radioactive inventory in NaK are due to ³⁹Ar which comes from ³⁹K(n,p)
- total Argon inventory in NaK is determined by ³⁹K(n,p)³⁹Ar and ³⁹K(n,np)³⁸Ar
- relying on TENDL-2015 we estimate nuclear production rates now with uncertainty ≈ 10-15% (by comparing with JEFF-3.2 = FENDL-3.1b)
- Argon gas production rate in the sealed Rigs turns out to be critically high for engineering design of IFMIF/DONES