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FOREWORD

In the framework of the OECD/NEA Expert Group on 3-D Radiation Transport Benchmarks, an
international benchmark for testing the ability of modern deterministic transport methods and codes to
treat reactor problems without spatial homogenisation was proposed in March 2001.

Twenty solutions were submitted for the two-dimensional configuration and eleven solutions were
submitted for the three-dimensional configuration. All of the participants’ solutions were compared to
a reference Monte Carlo solution. The analysis of the results demonstrates that modern deterministic
transport codes and methods can calculate flux distribution reasonably well without relying upon spatial
homogenisation techniques.

As a follow-up to the current benchmark, an extension of the 3-D calculations is proposed to
provide a more challenging test of the ability of present-day, three-dimensional methods to correctly
represent spatial heterogeneities.
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EXECUTIVE SUMMARY

One of the important issues of deterministic transport methods for whole-core calculations
concerns the accuracy of homogenisation techniques. A direct calculation for whole-core heterogeneous
geometries was not feasible in the past due to the limited capability of computers. One had to rely
upon homogenisation techniques to collapse the spatial heterogeneities into a tractable homogenous
description. These homogenisation techniques can introduce substantial error into the flux distribution
and consequently, reaction rates in the homogenised zones can be significantly in error. With modern
computational abilities, direct whole-core heterogeneous calculations are becoming ever-increasingly
feasible. Given the trend in computational ability observed thus far, it is not unreasonable to assume
that with time, whole-core calculations will eventually become commonplace.

In this context, an OECD/NEA benchmark problem was proposed to test the ability of modern
deterministic transport methods and codes to treat such reactor core problems without spatial
homogenisation. For this benchmark both two-dimensional and three-dimensional configurations were
developed, and very accurate Monte Carlo reference solutions were obtained for both configurations.
Seventeen participants submitted solutions for the two-dimensional configuration and eleven participants
contributed solutions for the three-dimensional configuration. All of the participant solutions were
compared to the reference Monte Carlo solution. This reference Monte Carlo solution was performed
such that very precise estimates of the pin powers were obtained.

Overall, all the results submitted by the participants agreed well with the reference solution.
A majority of the participants obtained solutions that were more than acceptable for typical reactor
calculations and the remaining errors in the participant solutions can be attributed to the high-order
space-angle approximation necessary to solve this particular benchmark problem. It is important to
note that the high-order space-angle approximation needed for this benchmark is not necessarily typical
for all such whole-core problems. In fact, the high-order space-angle approximation was sought as an
attempt to reduce the burden of accuracy placed upon the Monte Carlo solution (time required to obtain
the Monte Carlo solution). Thus, this benchmark cannot be taken as a representative calculation for all
heterogeneous problems.

As a follow-up to the current benchmark, an extension of the three-dimensional calculations is
proposed to provide a more thorough test of present-day three-dimensional methods’ abilities to handle
spatial heterogeneities while still allowing participants to investigate sensitivities to space-angle
approximations implemented in their codes.
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Chapter 1

INTRODUCTION

The NEA Expert Group on 3-D Radiation Transport Benchmarks was formed to deal with
scientific issues in the field of deterministic and stochastic methods and computer codes relative to
three-dimensional radiation transport. The main objectives of the Expert Group are to develop
benchmarks and comparison exercises for 3-D radiation transport computer codes, to carry out
validation of methods and identify their strengths, limitations, and accuracy, and to suggest needs for
method development.

A recent benchmark, 3-D Radiation Transport Benchmarks for Simple Geometries with Void
Regions, considered geometries composed of highly-absorbing medium with voided streaming paths.
The analysis of the participant results was completed in 2000 and it was published as an OECD/NEA
report [1]. Moreover, the detailed participant results can be found in a special issue of Progress of
Nuclear Energy [2].

A second important issue of deterministic transport methods for whole-core calculations concerns
the accuracy of homogenisation techniques. A direct calculation for whole-core heterogeneous
geometries was not feasible in the past due to the limited capability of computers. One had to rely
upon homogenisation techniques to collapse the spatial heterogeneities into a tractable homogenous
description. These homogenisation techniques can introduce substantial error in the flux distribution
and thereby inaccurately predict the reaction rates in the homogenised zones. Modern computational
abilities have rendered direct whole-core heterogeneous calculations more feasible, although still very
computationally expensive. It is not unreasonable to assume that with time, however, such calculations
will eventually become commonplace with the advent of massively parallel computing platforms and
vast memory and disk space capabilities.

In this context, an OECD/NEA benchmark problem was proposed to test the ability of modern
deterministic transport methods and codes to treat such reactor core problems without spatial
homogenisation. For this benchmark both two-dimensional and three-dimensional configurations were
developed and very accurate Monte Carlo reference solutions were obtained for both configurations.
Seventeen participants submitted a total of twenty results for the two-dimensional configuration and
eleven participants each submitted a result for the three-dimensional configuration. This report provides
an analysis of all of the participant results compared to the reference Monte Carlo solutions.
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Chapter 2

DESCRIPTION OF THE BENCHMARK

The benchmark geometry chosen is the sixteen assembly (quarter core symmetry) C5 MOX fuel
assembly problem specified by Cavarec, et al. in Ref. [3]. The two-dimensional and three-dimensional
configurations are shown in Figure 1. As indicated, for the two-dimensional domain, vacuum boundary
conditions are applied to the right and to the bottom of the geometry while reflected boundary
conditions are applied to the top and left of the geometry. The overall dimensions of the two-dimensional
configuration as shown are 64.26 × 64.26 cm, while each assembly is 21.42 × 21.42 cm. For the
three-dimensional configuration, the fuel assemblies are 192.78 cm in the z direction (as shown) and
an additional 21.42 cm water reflector is added axially. The z boundary conditions are reflected below
and vacuum above as indicated in Figure 1. Again referring to Figure 1, the overall dimensions for
the three-dimensional configuration are 64.26 × 64.26 × 214.20 cm, while each assembly is
21.42 × 21.42 × 192.78 cm.

Each fuel assembly is made up of a 17 × 17 lattice of square pin cells, one of which is shown in
Figure 2. The side length of each pin cell is 1.26 cm and all of the fuel pins and guide tubes have a
0.54 cm radius. As indicated by Figure 2, there are two compositions for every pin cell. For this
benchmark problem a single moderator composition is provided for use in all of the pin cells and for
use in the water moderator (reflector) surrounding the assemblies. The composition layout for all four
assemblies is provided in Figure 3.

To describe the geometry, a seven-group set of cross-sections was obtained. The number densities
and the dimensions of the fuel, cladding and assemblies specified by S. Cathalau, et al. in Ref. [4]
were input into the collision probability code DRAGON (G. Marleau, et al.) which made use of the
WIMS-AECL 69-group library [5]. The seven-group, transport-corrected, isotropic scattering
cross-sections for UO2, the three enrichments of MOX, the guide tubes and fission chambers and the
moderator described in the problem specification are provided in Appendix A. The participants are
meant to use all of the provided cross-sections as specified, but substitute the transport-corrected total
cross-section for the total cross-section in their solutions.

In DRAGON, each fuel type was represented as a single pin cell in an infinite-lattice fine-mesh
collision probability calculation. A full anisotropic collision probability calculation was performed and
standard flux weighting was used to collapse to seven energy groups and to homogenise fuel, gap and
cladding materials into homogenised fuel compositions. Although other group structures were tested,
(2-group and 12-group), the seven-group set of cross-sections proved the most difficult to solve and
thus was chosen to enhance the transport difficulties of heterogeneous problems. The seven-group
moderator, homogenised guide tube and fission chamber cross-sections were obtained using a UO2

fuel spectrum. It is very important to note that all of the pin cells in Figure 3 have the geometry shown
in Figure 2, where for the fission chamber and guide tube, the “Fuel-Clad Mix” in Figure 2 is to be
replaced with fission chamber or guide tube compositions as necessary.
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It is acknowledged that the individual pin-cell lattice representation, the spatial homogenisation,
the group collapse and the use of a single set of water cross-sections introduced error into the
multi-group solution compared to a continuous energy solution of the same problem. However, the
object of this benchmark is not to examine the validity of the multi-group approximation with respect
to the continuous energy approach, but instead to provide a reasonable set of multi-group cross-sections
in which there is no fuel-coolant homogenisation. In an attempt to assess the errors incurred by the
multi-group cross-section methodology, some of the participants went a step further and solved the
continuous-energy specification of the benchmark as supplementary contributions. However, these
additional continuous-energy solutions were not taken into account in the analysis of results for the
consistency of result comparison against the multi-group reference solutions.

With the errors in cross-sections neglected, the geometry defined by Figures 1-3 combined with
the seven-group cross-sections of Appendix A provide an adequate basis for determining the accuracy
of deterministic transport codes. For both the two-dimensional and three-dimensional problems a
reference multi-group Monte Carlo solution was obtained using the MCNP code [6]. These reference
solutions provided very precise eigenvalue solutions in addition to pin power predictions for all of the
fuel pin cells in Figure 3. For additional comparisons, auxiliary multi-group Monte Carlo reference
solutions were obtained by some of the participants using KENO, VIM and MCNP. A comparison of
the reference solutions obtained by the participants will be made in Chapter 5 of this report.

Figure 1. Core configuration for the C5 benchmark problem
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Figure 2. Pin cell geometry

Figure 3. Benchmark pin cell compositions and numbering scheme
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Chapter 3

PARTICIPANTS AND CODES USED

Apart from the Monte Carlo multi-group reference solution (ANL solution) used for the final
comparison of contributed results, a few additional Monte Carlo reference solutions were provided by
participants and a comparison of those reference solutions obtained by the participants is made in
Chapter 5. The following describes those contributors who provided the additional reference solutions.

1. Argonne National Laboratory (ANL), USA
Participants: M.A. Smith, N. Tsoulfanidis, R.N. Blomquist, E.E. Lewis
Code used: MCNP and VIM (2-D only)

2. Los Alamos National Laboratory (LANL), USA
Participant: K. Parsons
Code used: MCNP

3. Oak Ridge National Laboratory (ORNL), USA
Participants: Y. Azmy, J. Gehin, R. Orsi (ENEA-Italy)
Code used: KENO

A total of 17 participants contributed results for the two-dimensional configuration, providing
20 solutions, and 11 participants contributed results for the three-dimensional configuration. A complete
list of participants is presented below. Calculation details provided by participants can be found in
Appendix B.

1. Commissariat à l’Energie Atomique (CEA), France
Participants: F. Moreau, S. Santandrea, R. Sanchez
Code used: APOLLO2 (method of characteristics), CRONOS2 (diffusion and SN transport)
Solutions provided: 2-D and 3-D

2. Gesellschaft fuer Reaktorsicherheit (GRS), Germany
Participants: A. Pautz, S. Langenbuch, W. Zwermann, K. Velkov
Code used: DORT and TORT (SN)
Solutions provided: 2-D and 3-D

3. Hanyang University (HU), Korea
Participants: J.K. Kim, C.Y. Han
Code used: TWODANT and THREEDANT (SN)
Solutions provided: 2-D and 3-D

4. Korea Atomic Energy Research Institute (KAERI), Korea
Participants: H.G. Joo, J.Y. Cho, K.S. Kim, S.Q. Zee
Code used: DeCART (method of characteristics 2-D/diffusion 1-D)
Solutions provided: 2-D and 3-D
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5. Korea Advanced Institute of Science and Technology (KAIST), Korea
Participants: N.Z. Cho, G.S. Lee, C.J. Park
Code used: CRX (method of characteristics 2-D/SN 1-D)
Solutions provided: 2-D and 3-D

6. Institute of Physics and Power Engineering (IPPE), Russian Federation
Participant: I.R. Suslov
Code used: MCCG3D (method of characteristics)
Solutions provided: 2-D and 3-D

7. Russian Research Centre Kurchatov Institue (RRC KI), Russian Federation
Participants: V.D. Davidenko, V.F. Tsibulsky
Code used: UNKGRO (method of characteristics with stochastic rays)
Solutions provided: 2-D and 3-D

8. Argonne National Laboratory (ANL), USA
Participants: M.A. Smith, N. Tsoulfanidis, E.E. Lewis, G. Palmiotti, T. Taiwo, R. Blomquist
Code used: VARIANT-ISE (nodal spherical harmonics with integral transport),
VARIANT-SE (nodal spherical harmonics)
Solutions provided: 2-D and 3-D

9. Los Alamos National Laboratory (LANL), USA
Participants: J.A. Dahl, R.E. Alcouffe, R.S. Baker
Code used: PARTISN (SN)
Solutions provided: 2-D and 3-D

10. Los Alamos National Laboratory (LANL), USA
Participants: T. Wareing, J. McGhee
Code used: PERICLES (2-D) and ATTILA (3-D) (SN)
Solutions provided: 2-D and 3-D

11. Oak Ridge National Laboratory (ORNL), USA
Participants: Y. Azmy, J. Gehin, R. Orsi (ENEA-Italy)
Code used: DORT and TORT (SN)
Solutions provided: 2-D and 3-D

12. Indira Gandhi Centre for Atomic Research (IGCAR), India
Participant: P. Mohanakrishnan
Code used: COHINT (interface current technique with P2 half space expansion)
Solutions provided: 2-D

13. TEPCO Systems Corporation (TEPSYS), Japan
Participant: S. Kosaka
Code used: CHAPLET (method of characteristics)
Solutions provided: 2-D

14. Russian Research Centre Kurchatov Institue (RRC KI), Russian Federation
Participant: V.F. Boyarinov
Code used: WIMS-SH SUHAM-2D (surface harmonics method)
Solutions provided: 2-D
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15. Russian Research Centre Kurchatov Institue (RRC KI), Russian Federation
Participants: A.A. Polismakov, A.V. Tchibiniaev
Code used: STRUCTURE (collision probability, SN synthesis)
Solutions provided: 2-D

16. Russian Research Centre Kurchatov Institue (RRC KI), Russian Federation
Participant: T.S. Poveschenko
Code used: GEFCOP (first collision probability method)
Solutions provided: 2-D

17. Pennsylvania State University (PSU), USA
Participants: B. Ivanov, K. Ivanov, R.J.J. Stamm’ler
Code used: HELIOS (current coupling collision probability)
Solutions provided: 2-D
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Chapter 4

METHOD OF RESULTS ANALYSIS

The goal set forth to each participant was to provide an eigenvalue and normalised pin power
solution (total power = number of fuel pins) for the benchmark problem. The comparison of the
eigenvalue result is straightforward since it is a unique number for which a very precise estimate can
be obtained using the Monte Carlo code. The comparison of the pin power distribution is not as
straightforward, since there are 1 056 total fuel pins (545 unique fuel pins by symmetry reduction) in
Figure 3. A direct comparison of all of the pin powers on an individual basis, like that done with the
eigenvalue, would result in an overwhelming amount of information and would not be very instructive.

To reduce the amount of information, the following unique pin power per cent error measures were
selected: per cent error on maximum pin power (peaking), per cent error on the minimum pin power,
maximum per cent error in the distribution and the per cent errors of the individual assembly powers.
The importance of these per cent error measures is clear since they represent individual estimates of
unique quantities.

To assess the overall pin power distribution, the following collective per cent error measures were
selected: average pin power per cent error (AVG), root mean square (RMS) of the pin power per cent
error distribution, and mean relative pin power per cent error (MRE). Eq. (1) defines the AVG error,
where N is the number of fuel pins and en is the calculated per cent error for the nth pin power, pn.

N

e
AVG N

n∑
=

(1)

Using similar notation, Eq. (2) defines the RMS per cent error, and Eq. (3) defines the MRE error
(pavg is the average pin power).

N

e

RMS N
n∑

=

2 (2)

avg

N
nn

pN

pe
MRE

⋅

⋅
=
∑ (3)

From Eq. (1), one can see that the AVG error measure will give a simple average of the pin power
per cent error. This is a very useful quantity since it is a straightforward number that gives an overall
idea of the pin power distribution accuracy. However the simple average does not indicate the way in
which the error is distributed. Thus the RMS and MRE error measures are also needed. The RMS error
measure weighs the largest per cent errors more than the smallest ones. Consequently, it gives a better
assessment of the distribution of the per cent errors than the AVG error measure can give. The MRE
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error measure weights the per cent error with the reference pin power, thereby linking the per cent error
distribution to the power distribution. Consequently, the MRE error measure gives an estimate of the
total amount of error in the pin power distribution where the RMS error is not linked to the actual
power distribution. In effect, the MRE error measure diminishes the importance of error in the low
power region in favour of error in the high power region. An instructional example is included in
Appendix C for clarity of the three measures of the error distribution.

The last information gathered from the participant solutions was a tally of the number of fuel pin
power predictions that made it within the 68%, 90%, 98% and 99.8% confidence intervals of the
reference solution pin power prediction. This error measure indicates the percentage of the fuel pins
that the participant’s code predicts within the levels of precision of the Monte Carlo reference solution.

A comparison of the participant computational times was not carried out for this benchmark. With
present-day computational abilities, comparison of computational efficiency between different codes is
almost impossible without first performing a series of identical timing benchmarks on all of the various
participant platforms. Additionally, some methods are penalised by the computational resources
available to them, such as core memory size, available scratch disk space, limited parallel computing
capabilities, etc. Such complications quite simply cannot be accounted for in timing benchmarks and
would inevitably result in an inadequate estimation of the methods involved. We have therefore
chosen to forego a rigorous comparison of computational efficiency and simply report a crude estimate
of the CPU time that each participant reported. This result is representative of the time required for the
participant to obtain their submitted solution on a regular basis and should not be construed as a figure
of merit for computational efficiency.
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Chapter 5

COMPARISONS OF THE REFERENCE MONTE CARLO SOLUTIONS

With the error measures selected, we now compare the various Monte Carlo multi-group reference
solutions submitted by the participants. Table 1 gives the information about the participants while
Table 2 gives the estimated number of histories for all of the Monte Carlo solutions. As can be seen in
Table 2, the reference MCNP solution used for this work does not implement the largest number of
histories and therefore does not necessarily constitute the best solution. However, it was felt to be
sufficient for this benchmark.

Table 3 gives the eigenvalue solutions, the per cent error with respect to the reference MCNP
solution, and the 68%, 98% and 99.8% confidence intervals associated with all of the Monte Carlo
solutions. As can be seen, only KENO is within the 68% confidence interval of the reference, but all
three are close to being within the 99.8% confidence interval. It is important to note that the statistical
error associated with both the reference MCNP solution and the participant Monte Carlo solution must
be combined to give the overall confidence interval.

Table 4 summarises the information for several specific pin powers selected as error measures in
Chapter 4. In Table 4, the per cent error information for the reference MCNP solution represents the
98% confidence intervals associated with the various pin powers. Similarly, the associated reference
statistical errors provided with the participant maximum per cent error are the reference MCNP 98%
confidence intervals for the fuel pin that had the maximum error. For the maximum pin power and the
minimum pin power all three participant Monte Carlo solutions agree with the reference Monte Carlo
solution within the 98% confidence interval, but not a 68% confidence interval. For the maximum
per cent error, none of the participant Monte Carlo solutions are within the reference 98% confidence
interval. However, similar to the eigenvalue, the confidence interval of both solutions must be merged
to obtain the true confidence interval. For the VIM result, the statistical error on the pin power with
2.2% error is 1.8% giving an overall 2.4% confidence interval (98%) for this pin and thus the 2.2%
error is well within the 98% confidence interval. Unfortunately, statistical error information was only
provided for the VIM solution. However, it is reasonable to assume that the MCNP-LANL and KENO
solutions display a similar behaviour.

Table 5 gives the assembly powers for the participant reference solutions along with the reference
MCNP solution. As can be seen, all of the assembly powers come well within or very close to the 98%
confidence intervals of the reference MCNP solution.

Table 6 gives the pin power distribution error measures for the Monte Carlo reference solutions.
As can be seen, only the VIM RMS error measure is significantly outside of the 98% confidence
interval of the reference MCNP solution. However, this is due to the fact that the VIM solution utilised
fewer histories, producing larger statistical errors (RMS of the statistical errors for VIM solution
is 1.3%). In short, the RMS of the statistical error on the VIM solution should be used (1.3%) rather
than the RMS of the statistical error on the reference MCNP solution (0.34%).
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The final error measure to compare is the percentage of fuel pins within the reference MCNP
confidence 68%, 90%, 98% and 99.8% confidence intervals tabulated in Table 7. Given that we are
comparing Monte Carlo solutions to Monte Carlo solutions we should expect the percentage of fuel
pins within the confidence interval to agree with the confidence interval of the reference MCNP solution
(68% within the 68% confidence interval). However, this will only be true if the confidence intervals
were based on the combined statistical error of the participant solution and the reference MCNP
solution, which was not possible for these results. The results shown are only based upon the reference
MCNP confidence intervals.

Continuing with the analysis of the three-dimensional Monte Carlo results, Table 8 provides
information on the participants and Table 9 gives an estimated number of histories for each Monte Carlo
calculation. As can be seen, no VIM solution was provided for the three-dimensional benchmark.

The Monte Carlo eigenvalue solutions and per cent errors with respect to the reference MCNP
solution are given in Table 10 along with the 68%, 98% and 99.8% confidence intervals associated.
Unlike the two-dimensional results of Table 3, both MCNP-LANL and KENO are within the 68%
confidence interval of the reference MCNP for the three-dimensional problem.

The maximum pin power, the minimum pin power and the maximum per cent error are tabulated
in Table 11 along with the per cent errors from the reference MCNP. As was the case for the
two-dimensional results, the reference MCNP information represents the 98% confidence intervals
associated with the error measures. For the maximum pin power and the minimum pin power, both
participant Monte Carlo solutions agree with the reference MCNP solution within the 98% confidence
interval. For the maximum per cent error, none of the participant reference solutions are within the
reference 98% confidence interval, but again, the confidence interval of both solutions must be merged
to obtain the true confidence interval. As was concluded for the two-dimensional solution, it is
reasonable to assume that the MCNP-LANL and KENO solutions have sufficient statistical error that
the combined 98% confidence intervals consume the discrepancies.

Table 12 gives the assembly powers for the participant reference solutions and the reference
MCNP. As was the case for the two-dimensional problem, all of the assembly powers come well
within the 98% confidence intervals of the reference MCNP solution.

The pin power distribution error measures for the three-dimensional geometry are given in
Table 13. In this table, both the MCNP-LANL and KENO solution are within the 98% confidence
interval of the reference MCNP solution for the three distribution error measures.

Table 14 gives the percentage of fuel pins that fall within the reference MCNP 68%, 90%, 98%
and 99.8% confidence intervals. These results are similar to those seen in Table 7, but a slight
improvement is discernible. To obtain a total agreement, however, the statistical error on both the
participant solution and the reference MCNP solutions must be combined, which was not done for
these results.

We can conclude from the analysis of the above Monte Carlo solutions that they all agree using a
98% confidence interval. Although some of the error measures such as the eigenvalue and assembly
powers agreed well using a 68% or 90% confidence interval, only a 98% confidence interval guaranteed
that all of the error measures were satisfied. In general, the maximum per cent error was the limiting
error measure making the 98% confidence interval essential. Thus, 98% reference MCNP confidence
intervals are used throughout the rest of this document to determine whether deterministic calculations
are “in agreement” with the Monte Carlo reference solution.
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The reference MCNP solution is provided electronically in Appendix D and both the pin power
and statistical error tables for the two- and three-dimensional geometries can be printed out using the
pre-formatted worksheets in the EXCEL workbooks. Similarly, all of the analysis tools and
information used to compare the various Monte Carlo solutions are provided electronically in
Appendix E. All of the Monte Carlo pin power solutions and error calculations with respect to the
reference MCNP solution can also be printed or viewed if desired.

Table 1. Participant information for the two-dimensional reference solutions

Code names Institution Abbreviation Country Participants

Reference
MCNP

Argonne National
Laboratory

ANL United States

M.A. Smith,
N. Tsoulfanidis,
R.N. Blomquist,
E.E. Lewis

VIM
Argonne National

Laboratory
ANL United States

M.A. Smith,
N. Tsoulfanidis,
R.N. Blomquist,
E. E. Lewis

MCNP-LANL
Los Alamos

National Laboratory
LANL United States K. Parsons

KENO
Oak Ridge

National Laboratory
ORNL United States

Y. Azmy, J. Gehin,
R. Orsi (ENEA)

Table 2. Estimated number of histories for the two-dimensional multi-group reference solutions

Code names Estimated millions of histories
Reference MCNP 300

VIM 81
MCNP-LANL 100

KENO 1 000

Table 3. Eigenvalue solutions for the two-dimensional multi-group reference solutions

Code names Eigenvalue Per cent error 68% 98% 99.8%
Reference MCNP 1.186550 0.003 0.008 0.010

VIM 1.187035 -0.041 0.012 0.027 0.036
MCNP-LANL 1.186380 -0.014 0.005 0.012 0.016

KENO 1.186520 -0.003 0.002 0.004 0.005

Table 4. Per cent error results for specific pin powers

Code names Maximum
pin power

Per cent
error

Minimum
pin power

Per cent
error

Maximum
per cent error

Associated
reference MCNP
statistical error

Ref. MCNP 2.498 ±0.16 0.23 ±0.58
VIM 2.495 -0.11 0.23 0.27 2.20 ±0.56

MCNP-LANL 2.495 -0.11 0.23 0.17 1.02 ±0.51
KENO 2.499 0.06 0.23 -0.01 0.76 ±0.44
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Table 5. Assembly power per cent error for the two-dimensional multi-group reference solutions

Code names Inner UO2
Per cent

error
MOX Per cent

error
Outer UO2

Per cent
error

Reference MCNP 492.8 ±0.10 211.7 ±0.18 139.8 ±0.20
VIM 492.3 -0.11 211.9 0.08 140.0 0.14

MCNP-LANL 492.8 0.00 211.8 0.05 139.6 -0.13
KENO 493.1 0.06 211.7 -0.02 139.6 -0.14

Table 6. Pin power distribution error measures for
the two-dimensional multi-group reference solutions

Code names AVG RMS MRE
Reference MCNP 0.32 0.34 0.27

VIM 0.32 0.42 0.27
MCNP-LANL 0.24 0.31 0.20

KENO 0.14 0.19 0.12

Table 7. Percentage of fuel pins within the reference confidence intervals

Code names 68% 90% 98% 99.8%
VIM 29.0 46.3 59.8 73.7

MCNP-LANL 34.3 55.8 73.1 85.1
KENO 54.4 78.8 93.0 98.5

Table 8. Participant information for the three-dimensional reference solutions

Code names Institution Abbreviation Country Participants

Reference MCNP
Argonne National

Laboratory
ANL United States

M.A. Smith,
N. Tsoulfanidis,
R.N. Blomquist,
E.E. Lewis

MCNP-LANL
Los Alamos

National Laboratory
LANL United States K. Parsons

KENO
Oak Ridge National

Laboratory
ORNL United States

Y. Azmy, J. Gehin,
R. Orsi (ENEA)

Table 9. Estimated number of histories for the three-dimensional multi-group reference solutions

Code names Estimated millions of histories
Reference MCNP 300

MCNP-LANL 114
KENO 1 000
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Table 10. Eigenvalue solutions for the three-dimensional multi-group reference solutions

Code names Eigenvalue Per cent error 68% 98% 99.8%
Reference MCNP 1.183810 0.003 0.008 0.010

MCNP-LANL 1.183800 -0.001 0.012 0.027 0.036
KENO 1.183780 -0.003 0.005 0.012 0.016

Table 11. Per cent error results for specific pin powers

Code names Maximum
pin power

Per cent
error

Minimum
pin power

Per cent
error

Maximum
per cent error

Associated
reference MCNP
statistical error

Reference MCNP 2.500 ±0.16 0.23 ±0.58
MCNP-LANL 2.496 -0.17 0.23 0.02 1.08 ±0.37

KENO 2.499 -0.05 0.23 0.42 0.64 ±0.44

Table 12. Assembly power per cent error for the
three-dimensional multi-group reference solutions

Code names Inner UO2
Per cent

error
MOX Per cent

error
Outer UO2

Per cent
error

Reference MCNP 492.9 ±0.10 211.8 ±0.18 139.6 ±0.20
MCNP-LANL 493.0 0.02 211.7 -0.02 139.6 -0.01

KENO 492.9 0.00 211.7 -0.02 139.7 0.05

Table 13. Pin power distribution error measures for
the two-dimensional multi-group reference solutions

Code names AVG RMS MRE
Reference MCNP 0.32 0.34 0.27

MCNP-LANL 0.20 0.26 0.17
KENO 0.12 0.16 0.10

Table 14. Percentage of fuel pins within the reference confidence intervals

Code names 68% 90% 98% 99.8%
MCNP-LANL 42.0 62.7 80.3 91.1

KENO 66.0 87.3 95.9 99.6
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Chapter 6

TWO-DIMENSIONAL BENCHMARK RESULTS

Seventeen (17) participants submitted a total of 20 solutions for the two-dimensional benchmark.
Table 15 provides the names of the participants along with their institution, home country and the
name of the code that produced the results submitted. A brief description of the spatial and angular
approximations implemented in each participant’s code is given in Table 16. To view a complete
summary of the participants’ code and method used, refer to the original documentation submitted by
each participant in Appendix B.

The purpose of the following analysis is not to point out the weaknesses or successes of any
individual participant’s code or method, especially considering that minor changes in the spatial and
angular approximations implemented in any individual participant’s code can substantially change the
results shown here. Therefore, the point of this analysis is simply to provide the participants with an
objective comparison of the results they submitted with a reference MCNP solution and the solutions
submitted by their peers.

For the two-dimensional benchmark, the solutions from 16 first-order codes and four second-order
codes were submitted. Five of the first order codes implement a collision probability method and six
implement the method of characteristics. The remaining first-order approaches implement a form of
discrete ordinates, four of which use a finite difference approach and one which uses a finite element
approach. For the second-order codes, one implements a finite element diffusion approach, one
implements a finite element discrete ordinates approach and two implement finite element, spherical
harmonic nodal approaches.

Table 17 tabulates the participant eigenvalue solutions and the per cent errors with respect to the
reference MCNP solution. Again, the statistical errors for the reference MCNP solution are the 98%
confidence intervals. Figure 4 displays the eigenvalue solutions ordered with respect to decreasing
eigenvalue accuracy where the dashed line represents the reference MCNP solution and the confidence
intervals are too small to view. Figure 5 displays the eigenvalue per cent error with respect to decreasing
eigenvalue accuracy where the reference MCNP statistical error again is too small to be distinguished.
As can be seen in Figures 4 and 5 and Table 17, a wide range of solutions were obtained, but a majority
of the solutions are reasonably close to the reference MCNP solution. Only three of the participants’
codes are within the 98% confidence interval of the MCNP eigenvalue, however the average error for
all the participant solutions is only about 0.08%, with only two of the solutions having substantially
large errors.

The specific pin power error measures are tabulated in Table 18. Figure 6 displays the maximum
pin power results, Figure 7 the minimum pin power results and Figure 8 the maximum per cent errors
found in each participant solution. For each participant solution, the location of the maximum error
(with respect to Figure 3) was determined and the statistical error associated with that pin obtained.
This statistical error has been tabulated for each participant in Table 18 in the column entitled
Associated reference MCNP statistical error and included in Figure 8 as Associated statistical error.
All of the participant solutions in Figures 6-8 are ordered with respect to decreasing solution accuracy.
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In Table 18, six participants obtained a maximum pin power within the 98% confidence interval and
eight obtained a minimum pin power within the 98% confidence interval. The maximum per cent error
results in Figure 8 show that none of the codes succeed in coming within the 98% MCNP confidence
intervals. Only three of the participant codes have maximum errors less than 1% and only 15 achieve
maximum errors less than 5%. Not surprisingly, maximum per cent error proved to be the most
difficult measure for deterministic methods to satisfy in both two- and three-dimensional problems.
It also represented the largest deviations between Monte Carlo calculations.

Next, the assembly power error measures are considered, the results of which are tabulated in
Table 19. Figure 9 displays the participant results for the inner UO2 assembly power, Figure 10 the
results for the MOX assembly power, and Figure 11 the results of the outer UO2 assembly power.
For the inner UO2 assembly power five participant solutions are within the 98% confidence interval.
A similar result is seen for the outer UO2 assembly, for which 10 participant solutions are within the
98% confidence interval. For the MOX assembly, seven participant solutions are within the 98%
confidence interval.

Table 20 gives the pin power distribution error measures for the two-dimensional benchmark
problem. Figure 12 displays the AVG error measure results, Figure 13 the RMS error measure results
and Figure 14 the MRE error measure results. Seven of the participants agree to the reference MCNP
solution within the 98% confidence interval for the AVG error measure and roughly 15 are less than
1% in error. The results of the RMS error measure are not as good, with only four of the participants
within the 98% confidence interval and 12 within 1%. For the MRE error measure, five of the
participants are within the 98% confidence interval and 16 are within 1%. It is important to note that
the decrease in accuracy from the AVG error to the RMS error is indicative of a presence of more fuel
pins with larger errors. However, given that the results of the MRE error measure do not exactly
follow the trend seen from the AVG to the RMS error measure, it appears that the increase in fuel pin
inaccuracy is occurring in the low power region of the problem geometry (i.e. outer UO2 pins).

The last information gathered from the participant results is the number of fuel pins that lay
within the 68%, 90%, 98% and 99.8% confidence intervals of the reference MCNP solution. Table 21
tabulates the number of fuel pins within the various confidence intervals while Table 22 tabulates the
percentage of fuel pins within the confidence intervals. Figure 15 plots the participant results, ordered
with respect to the 98% confidence interval results. As can be seen, none of the participants match the
98% confidence interval and relatively few are close. This error measure represents by far the strictest
measure of accuracy that can be applied to the pin power distribution; however, it is subject to
significant uncertainty from the normalisation procedure applied. For instance, normalisation applied
to the peak pin power (a specific location in the pin power distribution) rather than the total power
sums can result in 5-15% changes in the participant results shown in Figure 15. For this reason, this
error measure should not be assumed essential to guarantee the accuracy of any given solution.

Overall, the inaccuracies in the two-dimensional benchmark can be attributed, in part, to insufficient
space-angle approximations implemented by the participants in their codes. In some cases the
participants submitted multiple results using coarser mesh or coarser angular approximations than
those used in the above analysis. In almost all of those cases the coarser solutions were significantly
less accurate than those shown in this chapter. Since all participants did not turn in multiple solutions,
a complete analysis of the refinement of the participant solution was not possible and therefore is not
included here. However, an electronic copy of the analysis workbook is available under the subdirectory
“CoarserAngularAndSpatialResults” in Appendix F. For cross-referencing, the details of the spatial
and angular refinements can be found in the participants’ original submittal results and documentation
provided in Appendix G (see also Appendix B). Also, for completeness, an estimate of each
participant’s CPU time is provided in Table 23.
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It is suggested, as a first approach to improving the accuracy of a solution, that further refinement
of the angular and spatial variables be investigated by the participants. The analysis tools used for the
two-dimensional benchmark work are provided electronically in Appendix F and can be used by the
participants for future comparisons if desired. Also, all of the participants’ pin power and per cent error
distributions were combined into a single printable worksheet. This worksheet is part of the EXCEL
workbook “z.2D.Summary.of.Final.Results” provided in Appendix F.

Additional continuous Monte Carlo solutions provided by some of the participants are not used
for comparison in the report. However, they are provided electronically in Appendix H.
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Table 15. Participant information for the two-dimensional benchmark problem

Code names Institution Abbreviation Country Participants

APOLLO2
Commissariat à

l’Energie Atomique
CEA France

S. Santandrea
R. Sanchez

CRONOS2
Commissariat à

l’Energie Atomique
CEA France F. Moreau

CRONOS2-SN
Commissariat à

l’Energie Atomique
CEA France F. Moreau

DORT-GRS
Gesellschaft fuer
Reaktorsicherheit

GRS Germany

A. Pautz,
S. Langenbuch,
W. Zwermann,
K. Velkov

COHINT
Indira Gandhi Centre
for Atomic Research

IGCAR India P. Mohanakrishnan

CHAPLET TEPCO Systems Corporation TEPSYS Japan S. Kosaka

TWODANT
Hanyang University,

Dept. Nuclear Engineering
HU-Korea Korea

J.K. Kim
C.Y. Han

DeCART
Korea Atomic Energy

Research Institute
KAERI Korea

H.G. Joo,
J.Y. Cho,
K.S. Kim,
S.Q. Zee

CRX
Korea Advanced Institute

of Science and Technology
KAIST Korea

N.Z. Cho,
G.S. Lee,
C.J. Park

MCCG3D
Institute of Physic and Power

Engineering
IPPE Russia I.R. Suslov

WIMS-SH
SUHAM-2D

Russian Research Centre
“Kurchatov Institute”

RRC KI Russia V.F. Boyarinov

UNKGRO
Russian Research Centre

“Kurchatov Institute”
RRC KI Russia

V.D. Davidenko,
V.F. Tsibulsky

STRUCTURE
Russian Research Centre

“Kurchatov Institute”
RRC KI Russia

A.A. Polismakov,
A.V. Tchibiniaev

GEFCOP
Russian Research Centre

“Kurchatov Institute”
RRC KI Russia T.S. Poveschenko

VARIANT-ISE Argonne National Laboratory ANL United States
M.A. Smith,
N. Tsoulfanidis,
E.E. Lewis

VARIANT-SE Argonne National Laboratory ANL United States
M.A. Smith,
N. Tsoulfanidis,
E.E. Lewis

PARTISN
Los Alamos

National Laboratory
LANL United States

J.A. Dahl,
R.E. Alcouffe,
R.S. Baker

PERICLES
Los Alamos

National Laboratory
LANL United States

T. Wareing
J. McGhee

DORT-ORNL
Oak Ridge

National Laboratory
ORNL United States

Y. Azmy,
J. Gehin,
R. Orsi (ENEA)

HELIOS
Pennsylvania State Univ.,
Dept. Nuclear Engineering

PSU-USA United States
B. Ivanov,
K. Ivanov,
R.J.J. Stamm’ler
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Table 16. Brief code description for each participant two-dimensional benchmark solution

Code names Angular approximation Spatial approximation
APOLLO2 Method of characteristics Flat source arbitrary spatial mesh
CRONOS2 Diffusion Finite element method

CRONOS2-SN Discrete ordinates Finite element method

DORT-GRS Discrete ordinates
Cartesian finite differences, linear spatial
differencing

COHINT
Interface current technique with P2

half space expansion
Spatial Cartesian mesh with flat spatial
differencing

CHAPLET Method of characteristics Flat source arbitrary spatial mesh

TWODANT Discrete ordinates
Spatial Cartesian mesh with linear spatial
differencing

DeCART Method of characteristics Flat source arbitrary spatial mesh
CRX Method of characteristics Flat source arbitrary spatial mesh

MCCG3D Method of characteristics QSD-linear arbitrary spatial mesh

WIMS-SH
SUHAM-2D

Surface harmonics method; zeroth
trial matrix-G3, first and second-P2,
third-diffusion

Spatial Cartesian mesh with one point per
cell, continuous inside each cell

UNKGRO
Method of characteristics with
stochastic rays

Flat source arbitrary spatial mesh

STRUCTURE Collision probability, SN synthesis Flat source arbitrary spatial mesh
GEFCOP First collision probability method Flat source arbitrary spatial mesh

VARIANT-ISE
Nodal spherical harmonics with
integral transport

Finite element method

VARIANT-SE Nodal spherical harmonics Finite element method

PARTISN Discrete ordinates
Spatial Cartesian mesh, diamond
differencing

PERICLES Discrete ordinates
Unstructured quadrilateral mesh with
bilinear discontinuous spatial differencing

DORT-ORNL Discrete ordinates
Cartesian finite differences, linear spatial
differencing

HELIOS Current coupling collision probability Flat source arbitrary spatial mesh
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Table 17. Eigenvalue solutions for the two-dimensional benchmark problem

Code names Eigenvalue Per cent error
Reference MCNP 1.186550 ±0.008

APOLLO2 1.186180 -0.031
CRONOS2 1.183230 -0.280

CRONOS2-SN 1.183380 -0.267
DORT-GRS 1.184818 -0.146

COHINT 1.175300 -0.948
CHAPLET 1.186560 0.001
TWODANT 1.186677 0.011

DeCART 1.186600 0.004
CRX 1.188130 0.133

MCCG3D 1.186570 0.002
WIMS-SH SUHAM-2D 1.186284 -0.022

UNKGRO 1.185230 -0.111
STRUCTURE 1.185228 -0.111

GEFCOP 1.186300 -0.021
VARIANT-ISE 1.187454 0.076
VARIANT-SE 1.184945 -0.135

PARTISN 1.186370 -0.015
PERICLES 1.186580 0.003

DORT-ORNL 1.184960 -0.134
HELIOS 1.193299 0.569
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Figure 4. Eigenvalue solutions for the two-dimensional benchmark

Figure 5. Eigenvalue per cent errors for the two-dimensional benchmark
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Table 18. Participant results for specific pin powers in the two-dimensional benchmark

Code names Maximum
pin power

Per cent
error

Minimum
pin power

Per cent
error

Maximum
per cent error

Associated
reference MCNP
statistical error

Ref. MCNP 2.498 ±0.16 0.232 ±0.58
APOLLO2 2.499 0.03 0.239 3.10 4.16 ±0.58
CRONOS2 2.520 0.90 0.241 4.00 5.95 ±0.58

CRONOS2-SN 2.506 0.34 0.241 4.00 4.98 ±0.58
DORT-GRS 2.510 0.48 0.232 0.02 1.21 ±0.44

COHINT 2.395 -4.11 0.250 8.11 11.36 ±0.40
CHAPLET 2.495 -0.13 0.233 0.69 0.93 ±0.56
TWODANT 2.534 1.43 0.231 -0.03 2.32 ±0.44

DeCART 2.492 -0.23 0.235 1.68 1.84 ±0.56
CRX 2.498 0.01 0.233 0.71 1.07 ±0.40

MCCG3D 2.498 -0.01 0.233 0.47 0.63 ±0.56
WIMS-SH

SUHAM-2D
2.525 1.07 0.228 -1.32 4.38 ±0.40

UNKGRO 2.503 0.19 0.236 1.94 4.21 ±0.47
STRUCTURE 2.480 -0.71 0.242 4.36 4.52 ±0.56

GEFCOP 2.495 -0.10 0.228 -1.32 10.16 ±0.21
VARIANT-ISE 2.496 -0.07 0.232 0.22 0.54 ±0.44
VARIANT-SE 2.508 0.39 0.232 0.11 1.13 ±0.44

PARTISN 2.503 0.18 0.232 0.18 5.23 ±0.23
PERICLES 2.494 -0.16 0.231 -0.21 0.92 ±0.56

DORT-ORNL 2.512 0.57 0.231 -0.22 1.30 ±0.44
HELIOS 2.510 0.49 0.233 0.54 2.27 ±0.44
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Figure 6. Maximum pin power results for the two-dimensional benchmark

Figure 7. Minimum pin power results for the two-dimensional benchmark
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Figure 8. Maximum per cent errors for the two-dimensional benchmark
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Table 19. Assembly power per cent errors for the two-dimensional benchmark

Code names Inner UO2
Per cent

error
MOX Per cent

error
Outer UO2

Per cent
error

Reference MCNP 492.8 ±0.10 211.7 ±0.18 139.8 ±0.20
APOLLO2 492.3 -0.10 211.7 0.01 140.3 0.34
CRONOS2 495.4 0.53 210.8 -0.41 138.9 -0.61

CRONOS2-SN 494.0 0.24 211.0 -0.34 140.0 0.16
DORT-GRS 494.5 0.34 211.0 -0.34 139.5 -0.20

COHINT 486.8 -1.22 213.8 0.97 141.7 1.36
CHAPLET 492.3 -0.10 211.9 0.10 139.9 0.05
TWODANT 497.5 0.95 209.6 -1.01 139.4 -0.30

DeCART 491.9 -0.18 212.0 0.15 140.0 0.19
CRX 492.9 0.01 211.8 0.03 139.6 -0.15

MCCG3D 492.8 -0.01 211.8 0.02 139.7 -0.03
WIMS-SH SUHAM-2D 494.9 0.43 211.3 -0.21 138.5 -0.89

UNKGRO 489.3 -0.70 212.9 0.57 140.8 0.73
STRUCTURE 490.2 -0.52 212.5 0.37 140.8 0.71

GEFCOP 490.8 -0.40 213.8 0.97 137.7 -1.50
VARIANT-ISE 492.6 -0.04 211.8 0.06 139.7 -0.03
VARIANT-SE 494.2 0.28 211.1 -0.27 139.5 -0.18

PARTISN 493.3 0.11 211.5 -0.12 139.8 -0.02
PERICLES 491.9 -0.17 212.4 0.33 139.3 -0.38

DORT-ORNL 494.9 0.42 210.8 -0.41 139.4 -0.26
HELIOS 494.4 0.32 211.1 -0.30 139.5 -0.20
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Figure 9. Inner UO2 assembly power per cent errors for the two-dimensional benchmark

Figure 10. MOX assembly power per cent errors for the two-dimensional benchmark
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Figure 11. Outer UO2 assembly power per cent errors for the two-dimensional benchmark
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Table 20. Pin power distribution error measures for the two-dimensional benchmark

Code names AVG RMS MRE
Reference MCNP 0.32 0.34 0.27

APOLLO2 0.51 0.78 0.36
CRONOS2 1.42 1.73 1.21

CRONOS2-SN 0.77 1.00 0.60
DORT-GRS 0.35 0.41 0.34

COHINT 2.66 3.58 2.34
CHAPLET 0.18 0.24 0.15
TWODANT 0.89 1.04 0.90

DeCART 0.31 0.46 0.24
CRX 0.23 0.30 0.19

MCCG3D 0.13 0.17 0.11
WIMS-SH SUHAM-2D 1.24 1.57 1.04

UNKGRO 1.01 1.28 0.91
STRUCTURE 0.82 1.24 0.62

GEFCOP 1.88 2.54 1.50
VARIANT-ISE 0.13 0.17 0.11
VARIANT-SE 0.29 0.35 0.28

PARTISN 0.22 0.33 0.23
PERICLES 0.31 0.37 0.28

DORT-ORNL 0.42 0.49 0.41
HELIOS 0.61 0.77 0.52
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Figure 12. AVG per cent error for the two-dimensional benchmark

Figure 13. RMS per cent error for the two-dimensional benchmark
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Figure 14. MRE per cent error for the two-dimensional benchmark
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Table 21. Number of fuel pins within the reference
confidence intervals for the two-dimensional benchmark

Code names 68% 90% 98% 99.8%
APPOLLO2 223 389 517 628
CRONOS2 60 101 147 173

CRONOS2-SN 100 150 224 305
DORT-GRS 203 361 486 661

COHINT 30 50 84 107
CHAPLET 485 734 911 1002
TWODANT 121 159 199 263

DeCART 338 519 696 833
CRX 376 569 784 942

MCCG3D 655 884 1013 1050
WIMS-SH SUHAM-2D 68 108 174 209

UNKGRO 91 143 195 273
STRUCTURE 120 217 316 422

GEFCOP 48 90 132 192
VARIANT-ISE 660 879 1008 1054
VARIANT-SE 247 403 597 781

PARTISN 412 621 817 933
PERICLES 165 344 576 783

DORT-ORNL 159 245 393 530
HELIOS 142 217 324 437

Table 22. Percentage of fuel pins within the reference
confidence intervals for the two-dimensional benchmark

Code names 68% 90% 98% 99.8%
APPOLLO2 21.1 36.8 49.0 59.5
CRONOS2 5.7 9.6 13.9 16.4

CRONOS2-SN 9.5 14.2 21.2 28.9
DORT-GRS 19.2 34.2 46.0 62.6

COHINT 2.8 4.7 8.0 10.1
CHAPLET 45.9 69.5 86.3 94.9
TWODANT 11.5 15.1 18.8 24.9

DeCART 32.0 49.1 65.9 78.9
CRX 35.6 53.9 74.2 89.2

MCCG3D 62.0 83.7 95.9 99.4
WIMS-SH SUHAM-2D 6.4 10.2 16.5 19.8

UNKGRO 8.6 13.5 18.5 25.9
STRUCTURE 11.4 20.5 29.9 40.0

GEFCOP 4.5 8.5 12.5 18.2
VARIANT-ISE 62.5 83.2 95.5 99.8
VARIANT-SE 23.4 38.2 56.5 74.0

PARTISN 39.0 58.8 77.4 88.4
PERICLES 15.6 32.6 54.5 74.1

DORT-ORNL 15.1 23.2 37.2 50.2
HELIOS 13.4 20.5 30.7 41.4
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Figure 15. Percentage of fuel pins within the two-dimensional benchmark confidence intervals
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Table 23. Estimated CPU time for the two-dimensional benchmark

Code names Estimated
CPU time

APOLLO2 Hours
CRONOS2 Minutes

CRONOS2-SN Minutes
DORT-GRS Hours

COHINT Hours
CHAPLET Hours
TWODANT Minutes

DeCART Hour
CRX Not given

MCCG3D Not given
WIMS-SH SUHAM-2D Minutes

UNKGRO Days
STRUCTURE Days

GEFCOP Hours
VARIANT-ISE Hours
VARIANT-SE Days

PARTISN Minutes
PERICLES Hours

DORT-ORNL Days
HELIOS Minutes





49

Chapter 7

THREE-DIMENSIONAL BENCHMARK RESULTS

A total of 11 participants submitted results for the three-dimensional benchmark. Table 24 gives
the names of the participants along with their institution, their home country and the name of the code
that produced the results submitted. A brief description of the spatial and angular approximations
implemented in each participant’s code is given in Table 25. To view a complete summary of the
participants’ codes and methods used, refer to the original documentation submitted by each participant
in Appendix B.

For the three-dimensional benchmark, the results from nine first-order codes and two second-order
codes were submitted. Four of the first-order codes are collision probability methods, two of which
break down the three-dimensional problem into two-dimensional planer coupled-characteristics
calculations. The remaining first-order approaches are discrete ordinates methods, four of which
implement a finite-difference approach and one which implements a finite-element approach. As for
the second-order codes, one is a discrete ordinates method and the other is a nodal spherical harmonics
approach, and both implement finite element spatial approximations.

Table 26 provides the participant eigenvalue solutions and the per cent error with respect to the
reference MCNP solution. Figure 16 displays the eigenvalue solutions and Figure 17 the eigenvalue
per cent errors; both are ordered with respect to decreasing eigenvalue accuracy. As can be seen in
Figures 16 and 17 and Table 26, a wide range of solutions were obtained. Only one of the participants’
codes is within the 98% confidence interval of the MCNP reference. The average error on the
eigenvalue solution for all the participant solutions is about 0.1%.

The specific pin power error measures are tabulated in Table 27. Figure 18 plots the maximum
pin power results, Figure 19 the minimum pin power results, and Figure 20 the maximum per cent
errors found in each participant solution along with the statistical error associated with that pin power.
All of the participant solutions in Figures 6-8 are ordered with respect to decreasing solution accuracy.
In Table 27, four participants obtained a maximum pin power within the 98% confidence interval and
six obtained a minimum pin power within the 98% confidence interval. The maximum per cent error
results in Figure 20 are much worse, with none of the codes succeeding in coming within the reference
MCNP confidence intervals. Only two of the participant codes have maximum errors less than 1% and
only seven achieve maximum errors less than 5%.

The assembly power error measures are tabulated in Table 28. Figure 21 plots the participant
results for the inner UO2 assembly power, Figure 22 the results for the MOX assembly power and
Figure 23 the results of the outer UO2 assembly power. For the inner UO2 assembly power, four
participant solutions are within the 98% confidence interval. For the MOX assembly, seven participant
solutions are within the 98% confidence interval. For the outer UO2 assembly, eight of the participant
solutions are within the 98% confidence interval.



50

Table 29 gives the pin power distribution error measures for the three-dimensional benchmark
problem. Figure 24 displays the AVG per cent error results, Figure 25 the RMS per cent error results
and Figure 26 the MRE per cent error results. Four of the participant results agree within the 98%
confidence interval for the AVG error measure and nine are less than 1% in error. The results of the
RMS error measure are slightly worse as four of the participants are within the 98% confidence
interval and eight are less than 1% in error. The results for the MRE error measure are similar to the
results of the AVG error measure with four participants within the 98% confidence interval and nine
less than 1% in error.

Table 30 tabulates the number of fuel pins within the various confidence intervals while Table 31
tabulates the percentage of fuel pins within the confidence intervals. Figure 15 plots the participant
results, ordered with respect to the 98% confidence interval results. As can be seen, none of the
participants match the 98% confidence interval and relatively few are close.

As for the two-dimensional benchmark, Table 32 gives a crude estimate of each participant’s
CPU time. Also similar to the two-dimensional benchmark, the inaccuracies in the three-dimensional
benchmark can be attributed to insufficient space-angle approximations implemented by the participants.
It is suggested that to improve any of the results, further refinements of the angular and spatial variable
be applied by the participants. The analysis tools used for the three-dimensional benchmark are
provided electronically in Appendix I and can be used by the participants for future comparisons if
desired. Also, the table of all of the participant pin power distributions and pin power per cent error
distributions is included as a worksheet of the EXCEL workbook “z.3D.Summary.of.Final.Results”
provided in Appendix I.

Additional continuous Monte Carlo solutions provided by some of the participants are not used
for comparison in the report. However, they are provided electronically in Appendix H.
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Table 24. Participant information for the three-dimensional benchmark problem

Code names Institution Abbreviation Country Participants

CRONOS2-SN
Commissariat à

l’Energie Atomique
CEA France F. Moreau

TORT-GRS
Gesellschaft fuer
Reaktorsicherheit

GRS Germany

A. Pautz,
S. Langenbuch,
W. Zwermann,
K. Velkov

THREEDANT
Hanyang University,

Dept. Nuclear Engineering
HU-Korea Korea

J.K. Kim,
C.Y. Han

DeCART
Korea Atomic Energy

Research Institute
KAERI Korea

H.G. Joo,
J.Y. Cho,
K.S. Kim
S.Q. Zee

CRX
Korea Advanced Institute

of Science and Technology
KAIST Korea

N.Z. Cho,
G.S. Lee,
C.J. Park

MCCG3D
Institute of Physic

and Power Engineering
IPPE Russia I.R. Suslov

UNKGRO
Russian Research Centre

“Kurchatov Institute”
RRC KI Russia

V.D. Davidenko,
V.F. Tsibulsky

VARIANT-SE
Argonne National

Laboratory
ANL United States

M.A. Smith,
N. Tsoulfanidis,
E.E. Lewis

PARTISN
Los Alamos

National Laboratory
LANL United States

J.A. Dahl,
R.E. Alcouffe,
R.S. Baker

ATTILA
Los Alamos

National Laboratory
LANL United States

T. Wareing,
J. McGhee

TORT-ORNL
Oak Ridge

National Laboratory
ORNL United States

Y. Azmy,
J. Gehin,
R. Orsi (ENEA)
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Table 25. Brief code description for each participant three-dimensional benchmark solution

Code names Angular approximation Spatial approximation
CRONOS2-SN Discrete ordinates Finite element method

TORT-GRS Discrete ordinates
Cartesian finite differences, linear spatial
differencing

THREEDANT Discrete ordinates
Spatial Cartesian mesh with linear spatial
differencing

DeCART
Method of characteristics-2-D
diffusion-1-D

Flat source arbitrary spatial mesh

CRX Method of characteristics-2-D SN-1-D Flat source arbitrary spatial mesh
MCCG3D Method of characteristics QSD-Linear arbitrary spatial mesh

UNKGRO
Method of characteristics with stochastic
rays

Flat source arbitrary spatial mesh

VARIANT-SE Nodal spherical harmonics Finite element method

PARTISN Discrete ordinates
Spatial Cartesian mesh, diamond
differencing

ATTILA Discrete ordinates
Unstructured tetrahedral mesh with linear
discontinuous spatial differencing

TORT-ORNL Discrete ordinates
Cartesian finite differences, linear spatial
differencing

Table 26. Eigenvalue solutions for the three-dimensional benchmark problem

Code names Eigenvalue Per cent error
Reference MCNP 1.183810 ±0.008

CRONOS2-SN 1.177230 -0.556
TORT-GRS 1.180450 -0.284

THREEDANT 1.183919 0.009
DeCART 1.183860 0.004

CRX 1.185360 0.131
MCCG3D 1.183450 -0.030
UNKGRO 1.181040 -0.234

VARIANT-SE 1.178243 -0.470
PARTISN 1.183620 -0.016
ATTILA 1.183480 -0.028

TORT-ORNL 1.182340 -0.124
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Figure 16. Eigenvalue solutions for the three-dimensional benchmark

Figure 17. Eigenvalue per cent errors for the three-dimensional benchmark
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Table 27. Participant results for specific pin powers in the three-dimensional benchmark

Code names Maximum
pin power

Per cent
error

Minimum
pin power

Per cent
error

Maximum
per cent error

Associated
reference MCNP
statistical error

Ref. MCNP 2.500 ±0.16 0.23 ±0.58
CRONOS2-SN 2.513 0.53 0.24 3.80 6.47 ±0.40

TORT-GRS 2.520 0.82 0.23 0.08 1.71 ±0.44
THREEDANT 2.533 1.32 0.23 0.16 2.15 ±0.44

DeCART 2.491 -0.35 0.24 1.89 1.89 ±0.58
CRX 2.496 -0.14 0.23 0.87 1.05 ±0.40

MCCG3D 2.494 -0.24 0.23 1.29 1.59 ±0.58
UNKGRO 2.454 -1.82 0.25 8.00 9.18 ±0.40

VARIANT-SE 2.509 0.37 0.23 0.35 1.45 ±0.37
PARTISN 2.502 0.07 0.23 0.36 5.27 ±0.23
ATTILA 2.499 -0.04 0.23 0.29 0.58 ±0.44

TORT-ORNL 2.505 0.20 0.23 0.46 0.84 ±0.44

Figure 18. Maximum pin power results for the three-dimensional benchmark



55

Figure 19. Minimum pin power results for the three-dimensional benchmark

Figure 20. Maximum per cent errors for the three-dimensional benchmark
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Table 28. Assembly power per cent errors for the three-dimensional benchmark

Code names Inner UO2
Per cent

error
MOX Per cent

error
Outer UO2

Per cent
error

Reference MCNP 492.9 ±0.10 211.8 ±0.18 139.6 ±0.20
CRONOS2-SN 492.0 -0.17 212.0 0.12 140.0 0.26

TORT-GRS 495.5 0.52 210.5 -0.56 139.4 -0.12
THREEDANT 497.4 0.91 209.6 -0.99 139.3 -0.19

DeCART 491.8 -0.23 212.1 0.16 140.0 0.30
CRX 492.7 -0.05 211.9 0.07 139.5 -0.05

MCCG3D 491.7 -0.24 212.2 0.21 139.9 0.22
UNKGRO 484.3 -1.75 214.7 1.40 142.3 1.93

VARIANT-SE 494.1 0.24 211.2 -0.27 139.6 -0.03
PARTISN 493.2 0.07 211.5 -0.11 139.7 0.08
ATTILA 493.0 0.02 211.7 -0.02 139.6 -0.02

TORT-ORNL 493.7 0.16 211.4 -0.18 139.6 -0.01

Figure 21. Inner UO2 assembly power per cent errors for the three-dimensional benchmark
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Figure 22. MOX assembly power per cent errors for the three-dimensional benchmark

Figure 23. Outer UO2 assembly power per cent errors for the three-dimensional benchmark
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Table 29. Pin power distribution error measures for the three-dimensional benchmark

Code names AVG RMS MRE
Reference MCNP 0.32 0.34 0.27

CRONOS2-SN 1.62 2.00 1.37
TORT-GRS 0.51 0.62 0.52

THREEDANT 0.84 0.99 0.87
DeCART 0.36 0.50 0.27

CRX 0.22 0.29 0.18
MCCG3D 0.34 0.46 0.27
UNKGRO 2.09 2.82 1.75

VARIANT-SE 0.48 0.59 0.47
PARTISN 0.18 0.30 0.20
ATTILA 0.11 0.14 0.09

TORT-ORNL 0.19 0.24 0.18

Figure 24. AVG per cent error for the three-dimensional benchmark
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Figure 25. RMS per cent error for the three-dimensional benchmark

Figure 26. MRE per cent error for the three-dimensional benchmark
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Table 30. Number of fuel pins within the reference
confidence intervals for the three-dimensional benchmark

Code names 68% 90% 98% 99.8%
CRONOS2-SN 32 72 96 131

TORT-GRS 164 263 357 435
THREEDANT 121 169 225 287

DeCART 276 458 613 751
CRX 401 629 848 963

MCCG3D 252 438 588 755
UNKGRO 45 69 91 119

VARIANT-SE 168 282 421 580
PARTISN 488 724 885 981
ATTILA 725 949 1036 1056

TORT-ORNL 428 668 844 972

Table 31. Percentage of fuel pins within the reference
confidence intervals for the three-dimensional benchmark

Code names 68% 90% 98% 99.8%
CRONOS2-SN 3.0 6.8 9.1 12.4

TORT-GRS 15.5 24.9 33.8 41.2
THREEDANT 11.5 16.0 21.3 27.2

DeCART 26.1 43.4 58.0 71.1
CRX 38.0 59.6 80.3 91.2

MCCG3D 23.9 41.5 55.7 71.5
UNKGRO 4.3 6.5 8.6 11.3

VARIANT-SE 15.9 26.7 39.9 54.9
PARTISN 56.2 68.6 83.8 92.9
ATTILA 68.7 89.9 98.1 100.0

TORT-ORNL 40.5 63.3 79.9 92.0
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Figure 27. Percentage of fuel pins within the three-dimensional benchmark confidence intervals

Table 32. Estimated CPU time for the two-dimensional benchmark

Code names Estimated
CPU time

CRONOS2-SN Hours
TORT-GRS Days

THREEDANT Hours
DeCART Hours

CRX Not given
MCCG3D Not given
UNKGRO Days

VARIANT-SE Days
PARTISN Minutes
ATTILA Days

TORT-ORNL Not given
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Chapter 8

CONCLUSIONS

To test the ability of current deterministic transport codes treating reactor core problems without
spatial homogenisation, an OECD/NEA international benchmark problem was undertaken. A total of
20 participant contributions were provided for the 2-D configuration and a total of 11 were provided
for the 3-D configuration. The submitted results were compared against Monte Carlo reference solutions.

Overall all the results submitted were good; a majority of the participants obtained solutions that
were comparable to the reference MCNP solution. Most of the errors in the participant solutions can
be attributed to the high-order space-angle approximations necessary for this benchmark. It is important
to note however, that the high-order space-angle approximations needed for this benchmark may not
be necessary in all heterogeneous whole-core problems. This benchmark cannot therefore be taken as a
representative calculation for all heterogeneous problems. In conclusion, the preceding analysis shows
that modern deterministic transport codes can calculate the flux distribution reasonably well without
relying upon spatial homogenisation techniques.

As a follow-up to the current benchmark, an extension of the three-dimensional calculations will
be proposed to provide a more challenging test of present day three-dimensional methods’ abilities to
handle spatial heterogeneities while still allowing participants to investigate sensitivities to spatial and
angular approximations implemented in their codes.
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APPENDIX A

Benchmark Specification for
Deterministic 2-D/3-DMOX Fuel
Assembly Transport Calculations
without Spatial Homogenisation

C5G7 MOX Benchmark

E.E. Lewis
Northwestern University

Department of Mechanical Engineering
Evanston, Illinois 60208

M.A. Smith, N. Tsoulfanidis
University of Missouri, Rolla

Department of Nuclear Engineering
Rolla, Missouri 65409

G. Palmiotti, T.A. Taiwo, R.N. Blomquist
Argonne National Laboratory
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Outline

• Benchmark specification

• Appendix 1 – Description of computational model used to obtain benchmark solutions

• Appendix 2 – Results to be reported

Problem specification

We hereby propose that a seven-group form of the C5 MOX fuel assembly problem specified by
Cavarec, et. al. be used as a basis to test the ability of current transport codes to treat reactor core
problems without spatial homogenisation. The two-dimensional and three-dimensional configurations
are shown in Figure 1. For the two-dimensional domain, vacuum boundary conditions are applied to
the right and to the bottom of the geometry while reflected boundary conditions are applied to the top
and left of the geometry as indicated. The overall dimensions of the two-dimensional problem
geometry, as seen in Figure 1, are 64.26 × 64.26 cm, while each assembly is 21.42 × 21.42 cm. For the
three-dimensional configuration, the fuel assemblies are extended in the z direction 192.78 cm and an
additional 21.42 cm water reflector is added above them. The z boundary conditions are reflected
below and vacuum above as indicated in Figure 1. The overall dimensions for the three-dimensional
configuration, also as seen in Figure 1, are 64.26 × 64.26 × 214.20 cm, while each assembly is
21.42 × 21.42 × 192.78 cm.

Each fuel assembly is made up of a 17 × 17 lattice of square fuel pin cells, as seen in Figure 2.
The side length of every fuel pin cell is 1.26 cm and every cylinder is of radius 0.54 cm. As indicated
in Figure 2, there are two compositions for every fuel pin cell. For this benchmark problem a single
moderator composition is provided for use in all of the fuel-pin cells and in the water reflector
(moderator) surrounding the assemblies. The composition layout for the fuel-pin cell cylinders is
provided in Figure 3 for all four assemblies.

Table 1 provides seven-group, transport-corrected, isotropic-scattering cross-sections for UO2, the
three enrichments of MOX, the guide tubes and fission chamber, and the moderator described in the
problem specification. To obtain these cross-sections, the number densities and the dimensions of the
fuel, cladding and assemblies specified by S. Cathalau, et al. were used with the collision probability
code DRAGON (G. Marleau, et al.) and the WIMS-AECL 69-group library. Each fuel type was
represented as a single pin cell in an infinite-lattice fine-mesh collision probability calculation. A full
anisotropic collision probability calculation was performed and standard flux weighting was used to
collapse to seven energy groups and to homogenise fuel, gap and cladding materials into homogenised
fuel compositions. The seven-group moderator cross-sections in Table 1 were obtained using the UO2

pin cell spectrum. The cross-sections for the homogenised guide tube and fission chamber regions
were also obtained using a UO2 fuel spectrum to be consistent with the moderator cross-sections.

Problem objectives

Stage I. Two-dimensional configuration

Calculate:

(a) The eigenvalue.

(b) Each of the pin powers (with average pin power normalised to 1 fission/sec/cell).
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Stage II. Three-dimensional configuration

Calculate:

(a) The eigenvalue

(b) Each of the pin powers (with average pin power normalised to 1 fission/sec/cell)

It is suggested that the eigenvalue be compared to that of the approximate reference solution
eigenvalues provided below to ensure that the geometry is set up correctly (actual reference eigenvalues
are known to ±0.00004). For either, configuration an Excel spreadsheet is provided for the insertion of
pin power information as indicated by the numbering convention in Figure 3. If you are unable to
obtain pin powers and can only obtain pin production rates, accommodations are available. Both the
pin power and pin production rate reference solutions for the two- and three-dimensional configurations
were obtained via a multi-group Monte Carlo calculation utilising 300 million histories. A 0.14% RMS
statistical pin power per cent error was achieved for both two- and three-dimensional configurations.

Reference seven-group Monte Carlo eigenvalue answers

• Approximate eigenvalue for the two-dimensional configuration: 1.19.

• Approximate eigenvalue for the three-dimensional configuration: 1.18.

Comments

We are well aware that the homogenisation and group collapse introduced some error into the
cross-sections. Our object, however, is not to examine the validity of the group collapse, or fuel-cladding
homogenisation. Instead, it is to provide a reasonable set of multi-group cross-sections in which there
is no fuel-coolant homogenisation. Moreover, for brevity in data input we utilise a single set of water
cross-sections in both the UO2 and MOX assembles and in the reflector. The geometry specification
combined with these transport-corrected, isotropic-scattering, seven-group cross-sections provides a
basis for comparing the accuracy of deterministic transport codes with reference seven-group
Monte Carlo solutions. Each reference solution required approximately one week of CPU time on a
Sun 60. The solutions may also serve to test the validity of spatial fuel-coolant homogenisation
procedures at the fuel pin cell and/or at the fuel assembly level.
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Figure 1. Core configuration for the C5 benchmark problem
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Figure 2. Fuel pin layout

Figure 3. Benchmark fuel pin compositions and numbering scheme
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Table 1(a). UO2 fuel-clad macroscopic cross-sections

Total
cross-section

Transport
cross-section

Absorption
cross-section

Capture
cross-section

Fission
cross-section

Nu Chi

Group 1 2.12450E-01 1.77949E-01 8.02480E-03 8.12740E-04 7.21206E-03 2.78145E+00 5.87910E-01
Group 2 3.55470E-01 3.29805E-01 3.71740E-03 2.89810E-03 8.19301E-04 2.47443E+00 4.11760E-01
Group 3 4.85540E-01 4.80388E-01 2.67690E-02 2.03158E-02 6.45320E-03 2.43383E+00 3.39060E-04
Group 4 5.59400E-01 5.54367E-01 9.62360E-02 7.76712E-02 1.85648E-02 2.43380E+00 1.17610E-07
Group 5 3.18030E-01 3.11801E-01 3.00200E-02 1.22116E-02 1.78084E-02 2.43380E+00 0.00000E+00
Group 6 4.01460E-01 3.95168E-01 1.11260E-01 2.82252E-02 8.30348E-02 2.43380E+00 0.00000E+00
Group 7 5.70610E-01 5.64406E-01 2.82780E-01 6.67760E-02 2.16004E-01 2.43380E+00 0.00000E+00

Scattering block

to Group 1 to Group 2 to Group 3 to Group 4 to Group 5 to Group 6 to Group 7

Group 1 1.27537E-01 4.23780E-02 9.43740E-06 5.51630E-09 0.00000E+00 0.00000E+00 0.00000E+00

Group 2 0.00000E+00 3.24456E-01 1.63140E-03 3.14270E-09 0.00000E+00 0.00000E+00 0.00000E+00

Group 3 0.00000E+00 0.00000E+00 4.50940E-01 2.67920E-03 0.00000E+00 0.00000E+00 0.00000E+00

Group 4 0.00000E+00 0.00000E+00 0.00000E+00 4.52565E-01 5.56640E-03 0.00000E+00 0.00000E+00

Group 5 0.00000E+00 0.00000E+00 0.00000E+00 1.25250E-04 2.71401E-01 1.02550E-02 1.00210E-08

Group 6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.29680E-03 2.65802E-01 1.68090E-02

Group 7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 8.54580E-03 2.73080E-01

Table 1(b). 4.3% MOX fuel-clad macroscopic cross-sections

Total
cross-section

Transport
cross-section

Absorption
cross-section

Capture
cross-section

Fission
cross-section

Nu Chi

Group 1 2.11920E-01 1.78731E-01 8.43390E-03 8.06860E-04 7.62704E-03 2.85209E+00 5.87910E-01
Group 2 3.55810E-01 3.30849E-01 3.75770E-03 2.88080E-03 8.76898E-04 2.89099E+00 4.11760E-01
Group 3 4.88900E-01 4.83772E-01 2.79700E-02 2.22717E-02 5.69835E-03 2.85486E+00 3.39060E-04
Group 4 5.71940E-01 5.66922E-01 1.04210E-01 8.13228E-02 2.28872E-02 2.86073E+00 1.17610E-07
Group 5 4.32390E-01 4.26227E-01 1.39940E-01 1.29177E-01 1.07635E-02 2.85447E+00 0.00000E+00
Group 6 6.84950E-01 6.78997E-01 4.09180E-01 1.76423E-01 2.32757E-01 2.86415E+00 0.00000E+00
Group 7 6.88910E-01 6.82852E-01 4.09350E-01 1.60382E-01 2.48968E-01 2.86780E+00 0.00000E+00

Scattering block

to Group 1 to Group 2 to Group 3 to Group 4 to Group 5 to Group 6 to Group 7
Group 1 1.28876E-01 4.14130E-02 8.22900E-06 5.04050E-09 0.00000E+00 0.00000E+00 0.00000E+00
Group 2 0.00000E+00 3.25452E-01 1.63950E-03 1.59820E-09 0.00000E+00 0.00000E+00 0.00000E+00
Group 3 0.00000E+00 0.00000E+00 4.53188E-01 2.61420E-03 0.00000E+00 0.00000E+00 0.00000E+00
Group 4 0.00000E+00 0.00000E+00 0.00000E+00 4.57173E-01 5.53940E-03 0.00000E+00 0.00000E+00
Group 5 0.00000E+00 0.00000E+00 0.00000E+00 1.60460E-04 2.76814E-01 9.31270E-03 9.16560E-09
Group 6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 2.00510E-03 2.52962E-01 1.48500E-02
Group 7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 8.49480E-03 2.65007E-01
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Table 1(c). 7.0% MOX fuel-clad macroscopic cross-sections

Total
cross-section

Transport
cross-section

Absorption
cross-section

Capture
cross-section

Fission
cross-section

Nu Chi

Group 1 2.14540E-01 1.81323E-01 9.06570E-03 8.11240E-04 8.25446E-03 2.88498E+00 5.87910E-01
Group 2 3.59350E-01 3.34368E-01 4.29670E-03 2.97105E-03 1.32565E-03 2.91079E+00 4.11760E-01
Group 3 4.98910E-01 4.93785E-01 3.28810E-02 2.44594E-02 8.42156E-03 2.86574E+00 3.39060E-04
Group 4 5.96220E-01 5.91216E-01 1.22030E-01 8.91570E-02 3.28730E-02 2.87063E+00 1.17610E-07
Group 5 4.80350E-01 4.74198E-01 1.82980E-01 1.67016E-01 1.59636E-02 2.86714E+00 0.00000E+00
Group 6 8.39360E-01 8.33601E-01 5.68460E-01 2.44666E-01 3.23794E-01 2.86658E+00 0.00000E+00
Group 7 8.59480E-01 8.53603E-01 5.85210E-01 2.22407E-01 3.62803E-01 2.87539E+00 0.00000E+00

Scattering block

to Group 1 to Group 2 to Group 3 to Group 4 to Group 5 to Group 6 to Group 7
Group 1 1.30457E-01 4.17920E-02 8.51050E-06 5.13290E-09 0.00000E+00 0.00000E+00 0.00000E+00
Group 2 0.00000E+00 3.28428E-01 1.64360E-03 2.20170E-09 0.00000E+00 0.00000E+00 0.00000E+00
Group 3 0.00000E+00 0.00000E+00 4.58371E-01 2.53310E-03 0.00000E+00 0.00000E+00 0.00000E+00
Group 4 0.00000E+00 0.00000E+00 0.00000E+00 4.63709E-01 5.47660E-03 0.00000E+00 0.00000E+00
Group 5 0.00000E+00 0.00000E+00 0.00000E+00 1.76190E-04 2.82313E-01 8.72890E-03 9.00160E-09
Group 6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 2.27600E-03 2.49751E-01 1.31140E-02
Group 7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 8.86450E-03 2.59529E-01

Table 1(d). 8.7% MOX fuel-clad macroscopic cross-sections

Total
cross-section

Transport
cross-section

Absorption
cross-section

Capture
cross-section

Fission
cross-section

Nu Chi

Group 1 2.16280E-01 1.83045E-01 9.48620E-03 8.14110E-04 8.67209E-03 2.90426E+00 5.87910E-01
Group 2 3.61700E-01 3.36705E-01 4.65560E-03 3.03134E-03 1.62426E-03 2.91795E+00 4.11760E-01
Group 3 5.05630E-01 5.00507E-01 3.62400E-02 2.59684E-02 1.02716E-02 2.86986E+00 3.39060E-04
Group 4 6.11170E-01 6.06174E-01 1.32720E-01 9.36753E-02 3.90447E-02 2.87491E+00 1.17610E-07
Group 5 5.08900E-01 5.02754E-01 2.08400E-01 1.89142E-01 1.92576E-02 2.87175E+00 0.00000E+00
Group 6 9.26670E-01 9.21028E-01 6.58700E-01 2.83812E-01 3.74888E-01 2.86752E+00 0.00000E+00
Group 7 9.60990E-01 9.55231E-01 6.90170E-01 2.59571E-01 4.30599E-01 2.87808E+00 0.00000E+00

Scattering block

to Group 1 to Group 2 to Group 3 to Group 4 to Group 5 to Group 6 to Group 7
Group 1 1.31504E-01 4.20460E-02 8.69720E-06 5.19380E-09 0.00000E+00 0.00000E+00 0.00000E+00
Group 2 0.00000E+00 3.30403E-01 1.64630E-03 2.60060E-09 0.00000E+00 0.00000E+00 0.00000E+00
Group 3 0.00000E+00 0.00000E+00 4.61792E-01 2.47490E-03 0.00000E+00 0.00000E+00 0.00000E+00
Group 4 0.00000E+00 0.00000E+00 0.00000E+00 4.68021E-01 5.43300E-03 0.00000E+00 0.00000E+00
Group 5 0.00000E+00 0.00000E+00 0.00000E+00 1.85970E-04 2.85771E-01 8.39730E-03 8.92800E-09
Group 6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 2.39160E-03 2.47614E-01 1.23220E-02
Group 7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 8.96810E-03 2.56093E-01
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Table 1(e). Fission chamber macroscopic cross-sections

Total
cross-section

Transport
cross-section

Absorption
cross-section

Capture
cross-section

Fission
cross-section

Nu Chi

Group 1 1.90730E-01 1.26032E-01 5.11320E-04 5.11315E-04 4.79002E-09 2.76283E+00 5.87910E-01
Group 2 4.56520E-01 2.93160E-01 7.58130E-05 7.58072E-05 5.82564E-09 2.46239E+00 4.11760E-01
Group 3 6.40700E-01 2.84250E-01 3.16430E-04 3.15966E-04 4.63719E-07 2.43380E+00 3.39060E-04
Group 4 6.49840E-01 2.81020E-01 1.16750E-03 1.16226E-03 5.24406E-06 2.43380E+00 1.17610E-07
Group 5 6.70630E-01 3.34460E-01 3.39770E-03 3.39755E-03 1.45390E-07 2.43380E+00 0.00000E+00
Group 6 8.75060E-01 5.65640E-01 9.18860E-03 9.18789E-03 7.14972E-07 2.43380E+00 0.00000E+00
Group 7 1.43450E+00 1.17214E+00 2.32440E-02 2.32419E-02 2.08041E-06 2.43380E+00 0.00000E+00

Scattering block

to Group 1 to Group 2 to Group 3 to Group 4 to Group 5 to Group 6 to Group 7
Group 1 6.61659E-02 5.90700E-02 2.83340E-04 1.46220E-06 2.06420E-08 0.00000E+00 0.00000E+00
Group 2 0.00000E+00 2.40377E-01 5.24350E-02 2.49900E-04 1.92390E-05 2.98750E-06 4.21400E-07
Group 3 0.00000E+00 0.00000E+00 1.83425E-01 9.22880E-02 6.93650E-03 1.07900E-03 2.05430E-04
Group 4 0.00000E+00 0.00000E+00 0.00000E+00 7.90769E-02 1.69990E-01 2.58600E-02 4.92560E-03
Group 5 0.00000E+00 0.00000E+00 0.00000E+00 3.73400E-05 9.97570E-02 2.06790E-01 2.44780E-02
Group 6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 9.17420E-04 3.16774E-01 2.38760E-01
Group 7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 4.97930E-02 1.09910E+00

Table 1(f). Guide tube macroscopic cross-sections

Total
cross-section

Transport
cross-section

Absorption
cross-section

Capture
cross-section

Group 1 1.90730E-01 1.26032E-01 5.11320E-04 5.11320E-04
Group 2 4.56520E-01 2.93160E-01 7.58010E-05 7.58010E-05
Group 3 6.40670E-01 2.84240E-01 3.15720E-04 3.15720E-04
Group 4 6.49670E-01 2.80960E-01 1.15820E-03 1.15820E-03
Group 5 6.70580E-01 3.34440E-01 3.39750E-03 3.39750E-03
Group 6 8.75050E-01 5.65640E-01 9.18780E-03 9.18780E-03
Group 7 1.43450E+00 1.17215E+00 2.32420E-02 2.32420E-02

Scattering block

to Group 1 to Group 2 to Group 3 to Group 4 to Group 5 to Group 6 to Group 7
Group 1 6.61659E-02 5.90700E-02 2.83340E-04 1.46220E-06 2.06420E-08 0.00000E+00 0.00000E+00
Group 2 0.00000E+00 2.40377E-01 5.24350E-02 2.49900E-04 1.92390E-05 2.98750E-06 4.21400E-07
Group 3 0.00000E+00 0.00000E+00 1.83297E-01 9.23970E-02 6.94460E-03 1.08030E-03 2.05670E-04
Group 4 0.00000E+00 0.00000E+00 0.00000E+00 7.88511E-02 1.70140E-01 2.58810E-02 4.92970E-03
Group 5 0.00000E+00 0.00000E+00 0.00000E+00 3.73330E-05 9.97372E-02 2.06790E-01 2.44780E-02
Group 6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 9.17260E-04 3.16765E-01 2.38770E-01
Group 7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 4.97920E-02 1.09912E+00
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Table 1(g). Moderator macroscopic cross-sections

Total
cross-section

Transport
cross-section

Absorption
cross-section

Capture
cross-section

Group 1 2.30070E-01 1.59206E-01 6.01050E-04 6.01050E-04
Group 2 7.76460E-01 4.12970E-01 1.57930E-05 1.57930E-05
Group 3 1.48420E+00 5.90310E-01 3.37160E-04 3.37160E-04
Group 4 1.50520E+00 5.84350E-01 1.94060E-03 1.94060E-03
Group 5 1.55920E+00 7.18000E-01 5.74160E-03 5.74160E-03
Group 6 2.02540E+00 1.25445E+00 1.50010E-02 1.50010E-02
Group 7 3.30570E+00 2.65038E+00 3.72390E-02 3.72390E-02

Scattering block

to Group 1 to Group 2 to Group 3 to Group 4 to Group 5 to Group 6 to Group 7
Group 1 4.44777E-02 1.13400E-01 7.23470E-04 3.74990E-06 5.31840E-08 0.00000E+00 0.00000E+00
Group 2 0.00000E+00 2.82334E-01 1.29940E-01 6.23400E-04 4.80020E-05 7.44860E-06 1.04550E-06
Group 3 0.00000E+00 0.00000E+00 3.45256E-01 2.24570E-01 1.69990E-02 2.64430E-03 5.03440E-04
Group 4 0.00000E+00 0.00000E+00 0.00000E+00 9.10284E-02 4.15510E-01 6.37320E-02 1.21390E-02
Group 5 0.00000E+00 0.00000E+00 0.00000E+00 7.14370E-05 1.39138E-01 5.11820E-01 6.12290E-02
Group 6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 2.21570E-03 6.99913E-01 5.37320E-01
Group 7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.32440E-01 2.48070E+00
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Appendix A.1

DESCRIPTION OF COMPUTATIONAL MODEL
USED TO OBTAIN BENCHMARK SOLUTIONS

(Preferred format is WORD)

We would like to have as detailed a description as you are able to provide on your treatment of
the space-angle variables and the procedures by which you carried out the calculations (but limited to
five pages). Please include the following:

1. Name of participant(s).

2. Establishment(s).

3. Name of code system(s) used.

4. Computational method used (e.g. SN, PN, collision probability, characteristic, etc.).

5. Type and level of angular approximation (e.g. S8, P7, number of characteristic angles, etc.).

6. Type and level of spatial discretisation (e.g. linear-triangular finite elements, flat source region
collision probabilities, etc.). Provide number of mesh points, source regions, tracking pitch, etc.,
per lattice cell. If possible include a drawing or diagram of the spatial mesh for one lattice cell.

7. Convergence:

− Eigenvalue (at least 10 E-5).

− Pointwise (e.g. flux, fission source, etc.).

8. Machine on which the calculations were performed and (if possible) CPU time.

9. Other assumptions and characteristics, comments useful for interpreting correctly the results.
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Appendix A. 2

RESULTS TO BE REPORTED*

(Requested format is EXCEL)

1. Stage I: Two-dimensional configuration

Table I.1. Eigenvalue

Eigenvalue

Table I.2. UO2 Normalised pin powers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17

Table I.3. UO2 Normalised pin powers

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
31 31
32 32
33 33
34 34

                                                          
* Tables I.2 to I.4 are shown here only to clarify their from. For result submittal, the EXCEL templates should

be used.
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Table I.4. MOX normalised pin powers

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17

2. Stage II: Three-dimensional configuration

The following tables are to be filled in as in Stage I: Two-dimensional configuration:

• Table II.1. Eigenvalue

• Table II.2. UO2 normalised pin powers

• Table II.3. UO2 normalised pin powers

• Table II.4. MOX normalised pin powers
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APPENDIX B

Calculation Details Provided
by the Participants
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1. Commissariat à l’Énergie Atomique (CEA), France

Name of participant(s)

Frédéric Moreau – diffusion and SN calculation
Simone Santandrea – characteristic and Monte Carlo calculation
Richard Sanchez – characteristic

Establishment(s)

Commissariat à l’Energie Atomique
CEA SACLAY
DEN/DM2S/SERMA/LENR
F-91191 Gif-sur-Yvette Cedex

Name of code system(s) used

APOLLO2 and CRONOS2 of the SAPHYR system.

Computational method used for two-dimensional configuration

A reference calculation was performed with TRIPOLI4 (Monte Carlo) to purchase a reference.
Errors in per cent mentioned below are comparisons with these results.

• Method used: Monte Carlo.

• Ninety-two (92) million histories.

• ±51 pcm to 99%.

• Fission rate ±1%.

Results in file 2D_solution_S8_L25m.xls were obtained with CRONOS2 code:

• Method used: S8 with even parity formulation (20 directions).

• Eigenvalue = 1.18338.

• Relative error in fission rate between +3.690% in (32;32) and -2.057% in (29;5).

• Mean of absolute values for the relative errors in fission rate 0.72%.

• Pointwise: fission source.

• Calculation performed on DEC Alpha EV6 500 Mhz in 1 100 seconds.

• Spatial discretisation is obtained with isoparametric linear triangular finite elements with
36 triangles and 25 nodes by cell described below.

• Flux nodes: 3 472 560 (24 804 for one direction and one group).
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 Results in file 2D_solution_diffu_P85m.xls were obtained with CRONOS2 code:

• Method used: Diffusion.

• Eigenvalue = 1.18323.

• Relative error in fission rate between +4.010% in (34;32) and -3.538% in (30;1).

• Mean of absolute values for the relative errors in fission rate 1.30%.

• Pointwise: fission source.

• Calculation performed on DEC Alpha EV6 500 Mhz in 370 seconds.

• Spatial discretisation is obtained with isoparametric parabolic triangular finite elements
with 36 triangles and 85 nodes by cell described below.

• Flux nodes: 691 159 (98 737 for one group).
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Results in file 2D_solution_A.xls were obtained with APOLLO2 code:

• Eigenvalue = 1.18634.

• Maximum relative error in fission rate -3.2% in (32;32).

• Mean of absolute values for the relative errors in fission rate 0.50%.

• Number of characteristic angles: The angular quadrature consisted of eight nearly
uniformly distributed azimuthal angles and two polar angles, obtained from an optimised
Bickley-Naylor formula.

• Distance between trajectories of δ = 0.05 resulted in 8 234 trajectories with a total of
3 073 110 region intersections.

• Number of points per group: 19 188.

Computational method used for three-dimensional configuration

Results in file 3D_solution_S4_L13m.xls were obtained with CRONOS2 code:

• Method used: S4 with even parity formulation (12 directions).

• Eigenvalue = 1.17723.

• Pointwise: fission source.

• Calculation performed on DEC Alpha EV6 500 Mhz in 8 500 seconds.

• Nine (9) axial nodes.

• Spatial radial discretisation is obtained with isoparametric linear triangular finite elements
with 20 triangles and 13 nodes by cell described below

• Flux nodes: 9 909 648 (117 972 for one direction and one group).



86

2. Gesellschaft für Reaktorsicherheit (GRS), Germany

Name of participant(s)

A.Pautz, S. Langenbuch, W. Zwermann, K. Velkov

Establishment(s)

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH
Forschungsgelaende
D-85748 Garching
E-Mail: pat@grs.de

Name of code system(s) used

DORT/TORT (from DOORS 3.3).

Computational method used

Discrete ordinates (SN).

Type and level of angular approximation

S4,S8,S16 ⇒ 16(32), 48(96), 160(320) discrete directions in 2(3) spatial dimensions.

Type and level of spatial discretisation

2-D: Representation of each pin cell by a Cartesian mesh, ranging from 3 × 3 to 17 × 17 grid
points per pin-cell ⇒ Overall dimension (including reflector): ~ (120 × 120) – (650 × 650).

3-D: Representation of each pin cell by a 5 × 5 grid in x-y-plane, z-dimension divided into 12 axial
nodes => Overall dimension: 185 × 185 × 12 = 410 700 nodes.

Convergence

DORT (2-D): Eigenvalue 5E-8, fission source: 5E-7, pointwise fluxes: 1E-6.

TORT (3-D): Eigenvalue 1E-6, fission source: 1E-5, pointwise fluxes: 2E-5.

Machine on which the calculations were performed and (if possible) CPU time

COMPAQ Professional Workstation XP 1000, 500 MHz, EV6 processor, COMPAQ TRU64 UNIX
operating system.

Largest 2-D case (~420 000 meshes, S16): 387 min.

Largest 3-D case (~410 000 meshes, S16): 1 005 min.

Other assumptions and characteristics, comments useful for interpreting correctly the results

Since DORT and TORT only provide regular mesh features, the circular fuel pin had to be
approximated by a Cartesian mesh, the simplest case being a square fuel pin such that each pin
cell would be represented by 3 × 3 meshes. The approximation of the fuel pin was gradually



87

improved up to 17 × 17 meshes per pin cell. Figure 1 shows the nodalisation of the pin cell for a
typical mesh (7 × 7). The mesh was chosen such that the averaged distance between the circular
fuel pin borderline and the “staircase” approximation is minimised.

Figure 1. Example of typical pin cell nodalisation by a 7 � 7 Cartesian mesh

For the 2-D case, several calculations with different spatial resolutions and different angular
approximations were performed, the most exact one being a calculation with roughly 400 000
mesh points and a fully symmetrical S16 quadrature set. Considering this as the reference case, the
effect of lower order spatial and angular approximations was investigated, comparing eigenvalues
and pin powers. The resulting eigenvalues are compared in Figure 2 for S4, S8 and S16 quadrature
and different spatial resolutions (the number of nodes per pin cell is in one direction only).

Figure 2. Eigenvalue dependence on spatial and angular approximation
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While the simple square cell representation of the fuel pin obviously yields larger deviations in
the eigenvalue, higher spatial approximations, especially for large quadrature sets are very
consistent, the differences in the eigenvalue being only 1E-3. A further spatial improvement is not
necessary, however, there is a systematic effect on quadrature order.

We also considered the deviations in pin power distributions for the different cases from Figure 2.
Figure 3 shows the average pin power deviation (in %), as compared to the reference case. Again,
it can be seen that already for low order spatial and angular approximation, the agreement is quite
good (i.e. far below 1%).

Figure 3. Averaged pin power deviation for several angular and spatial approximations
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For the 3-D case, we restricted ourselves to a rather coarse (5 × 5) pin cell nodalisation to keep
the numerical effort reasonable. Only 12 axial nodes (two for the axial reflector) were employed,
thus giving an overall number of ~400 000 spatial nodes. The resulting eigenvalues for S4, S8 and
S16 calculations are in good agreement (cf. Table 1).

Table 1. 3-D eigenvalues for different angular approximations

S4 S8 S16

1.18012 1.18014 1.18045

The 3-D results are preliminary and will be improved by further calculations with a better spatial
approximation and better convergence of fluxes and fission rates.
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3. Hanyang University (HU), Korea

Name of participant(s)

Jong Kyung Kim, Chi Young Han

Establishment(s)

Department of Nuclear Engineering
Hanyang University
Seoul, Korea

Name of code system(s) used

TWODANT and THREEDANT within the DANTSYS 3.0 code system.

Computational method used

Discrete ordinates method (SN method).

Type and level of angular approximation

S8, P0.

Type and level of spatial discretisation

The circular fuel pin was modelled on an equivalent-area square pin and the number of fine mesh
per lattice pin cell is 4 × 4 as per the following drawing:

Fuel Fuel

Fuel Fuel

Convergence

• Eigenvalue: 1.0E-5.

• Pointwise flux and fission source: 1.0E-5.

Machine on which the calculations were performed and (if possible) CPU time

• For the 2-D calculations: HP Workstation C3700, CPU time of 77.3 seconds.

• For the 3-D calculations: HP Workstation C3700, CPU time of 17 463 seconds (about
291 minutes).
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4. Korea Atomic Energy Research Institute (KAERI), Korea

Name of participant(s)

Han Gyu Joo, JinYoung Cho, Kang Seog Kim, Sung Quun Zee

Establishment(s)

Korea Atomic Energy Research Institute

Name of code system(s) used

DeCART (Deterministic Core Analysis based on Ray Tracing).

Computational method used

2-D MOC (Method of Characteristics)/1-D Nodal Diffusion Kernel Based 3-D Coarse Mesh
Finite Difference (CMFD) Formulation.

Method Summary

Suppose a 3-D neutron transport problem consisting of several planes. As is normally done in the
transverse-integrated method, the transport equation can be integrated over the axial direction for
a plane. After the integration, the axial dependence disappears and instead, the axial leakage term
defined as the following appears:

( ) ( ) ( )( )yxyx
h

yxL kb
m

kt
m

kz

mm
kz ,,, ,,

,

, φφ
µ

−= (1)

where indices m, k, t and b stand for (angular) direction m, plane k, top and bottom of the plane,
and µ and hz are the angle cosine and the axial plane thickness, respectively. By moving the axial
leakage term to the right hand side, a 2-D problem is formulated with the axially averaged angular
fluxes as the unknowns. Once the spatial and angular dependence of the axial leakage term is
given, the 2-D problem can be solved using a 2-D MOC solver having angle-dependent sources.

In order to obtain the axial leakage source information, parallel 1-D problems are constructed
with the radial leakages as the source. In the work here, the plain diffusion formulation is applied
which gives the P1 angular dependence. Specifically, the 1-D nodal (NEM) diffusion solution is
obtained for every pin in the core and the angular flux distribution at the top and bottom of each
plane is approximated by the P1 relation involving the net current and surface flux.

Once the axial leakage sources are defined, the 2-D MOC solution can be obtained for each plane.
The planar MOC solution is then used to generate homogenised cell cross-sections and radial cell
coupling coefficient for use in the subsequent 3-D pin cell based CMFD formulation as well as
for use in the axial nodal diffusion calculation. In the 3-D CMFD formulation, the axial coupling
coefficients are also required and they come from the 1-D nodal diffusion solutions. The 3-D
CMFD problem is solved to newly determine the cell-averaged fluxes in the 3-D domain.
The CMFD solution is then used to update the axial and radial leakages for the subsequent 1-D
NEM and 2-D MOC kernel calculations. The alternate CMFD and kernel calculations are repeated
until convergence with partially converged solutions at each stage.
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Type and level of angular approximation

• Number of azimuthal angles: 16 for 180°.

• Number of polar angles: 8 for 90°.

Type and level of spatial discretisation

• Ray spacing: 0.2 mm in average.

• Number of source regions in a cell: 40.

• Number of planes: 12 (= 9 × 20 cm + 1 × 12.78 cm + 1 × 10 cm + 1 × 11.42 cm).

Convergence

• Eigenvalue:
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2D                         3D
     k-eff     Local FS Err     k-eff     Local FS Err
1  1.0000000   1.000000E+00   1.0000000   1.000000E+00
2  1.1403439   4.146554E-01   1.1347834   4.704383E-01
3  1.1493933   9.907043E-02   1.1433375   1.479915E-01
4  1.1593687   6.365263E-02   1.1532931   9.423468E-02
5  1.1847350   8.320791E-03   1.1819613   8.781641E-03
6  1.1849592   2.959370E-03   1.1821466   3.426526E-03
7  1.1849592   8.185127E-01   1.1821466   7.575092E-01
8  1.1807278   5.556894E-02   1.1779500   8.877448E-02
9  1.1874609   1.986861E-02   1.1846560   2.645167E-02
10  1.1881015   7.815129E-03   1.1852807   1.196876E-02
11  1.1865270   4.899410E-04   1.1837597   1.079572E-03
12  1.1865382   1.494405E-04   1.1837693   1.822407E-04
13  1.1865382   1.677845E-01   1.1837693   1.734116E-01
14  1.1846816   1.397117E-02   1.1819444   1.398045E-02
15  1.1855759   3.002944E-03   1.1828323   3.137844E-03
16  1.1859958   1.406769E-03   1.1832493   1.420682E-03
17  1.1862573   2.714409E-04   1.1835189   2.765414E-04
18  1.1862647   1.192796E-04   1.1835260   1.242538E-04
19  1.1862631   1.217372E-05   1.1835245   1.321156E-05
20  1.1862633   4.665696E-06   1.1835246   4.965846E-06
21  1.1862633   9.394693E-03   1.1835246   9.405033E-03
22  1.1868412   2.293776E-03   1.1841001   2.607735E-03
23  1.1866956   9.938332E-04   1.1839542   1.013843E-03
24  1.1866908   1.220952E-04   1.1839487   1.251961E-04
25  1.1866886   3.778328E-05   1.1839465   3.974089E-05
26  1.1866906   3.164658E-06   1.1839486   3.437141E-06
27  1.1866906   8.797077E-07   1.1839486   1.045821E-06
28  1.1866906   4.435175E-03   1.1839486   4.631065E-03
29  1.1865126   1.572607E-03   1.1837714   1.660907E-03
30  1.1865707   2.848132E-04   1.1838295   2.858851E-04
31  1.1865992   2.249075E-04   1.1838578   2.292892E-04
32  1.1866121   3.722954E-05   1.1838705   3.812924E-05
33  1.1866126   1.557261E-05   1.1838711   1.621721E-05
34  1.1866120   1.619264E-06   1.1838705   1.692571E-06
35  1.1866120   5.804732E-07   1.1838705   6.247343E-07
36  1.1866120   4.164919E-04   1.1838705   5.237001E-04
37  1.1866147   4.983169E-04   1.1838730   4.989359E-04
38  1.1866053   1.627867E-04   1.1838637   1.717287E-04
39  1.1866062   4.889314E-05   1.1838646   5.423033E-05
40  1.1866134   3.886550E-06   1.1838718   4.490787E-06
41  1.1866134   1.472656E-06   1.1838718   1.463775E-06
42  1.1866134   7.007503E-04   1.1838718   7.143842E-04
43  1.1865949   3.262967E-04   1.1838533   3.271139E-04
44  1.1866010   4.461671E-05   1.1838595   4.719647E-05
45  1.1866050   3.783211E-05   1.1838635   4.012758E-05
46  1.1866075   6.364414E-06   1.1838659   6.512143E-06
47  1.1866076   2.457036E-06   1.1838660   2.564800E-06
48  1.1866076   1.325028E-04   1.1838660   1.327231E-04
49  1.1866024   1.124240E-04   1.1838608   1.161037E-04
50  1.1866022   2.354612E-05   1.1838606   2.803590E-05
51  1.1866031   8.546678E-06   1.1838614   8.633681E-06
52  1.1866047   8.636721E-07   1.1838631   8.615421E-07
53  1.1866047   3.596965E-07   1.1838631   3.673712E-07
54  1.1866047   1.359356E-04   1.1838631   1.341719E-04
55  1.1866014   8.334188E-05   1.1838598   8.367872E-05
56  1.1866024   9.963653E-06   1.1838608   1.011500E-05
57  1.1866032   8.265960E-06   1.1838616   8.912132E-06
58  1.1866038   1.435824E-06   1.1838622   1.484320E-06
59  1.1866038   5.216732E-07   1.1838622   5.577623E-07
60  1.1866038   3.398829E-05   1.1838622   3.400864E-05
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Machine on which the calculations were performed and (if possible) CPU time

• Machine: 1 GHz Pentium-III PC and IBM SMP Regatta (1.3 GHz Power4 CPU).

• CPU time: 2-D – 48.5 minutes (PC), 3-D – 63.4 minutes (IBM with six CPUs).

Other assumptions and characteristics, comments useful for interpreting correctly the results

Sensitivity study on angular and spatial discretisation parameters has been performed for the 2-D
and 3-D problems. The results are summarised in the following table. As shown in the table the
most refined DeCART solution has about 140 pcm error in the eigenvalue and about 1.4% error
in the pin power for both 2-D and 3-D cases. There is little dependence noted on the plane
thickness for this problem. This is probably due to the fact that this core is quite uniform axially
except for the axial reflector region. For rodded and thermal feedbacked cases, however, stronger
dependence is expected. Thus the primary plane thickness was chosen to be 20 cm.

Table 1. Sensitivity study summary

Dim. NAzi NPol
δR

mm
NFSR

Fuel+Mod
Npl NRT NCMFD

εk

pcm

max
pε
%

RMS
pε
%

TRT

sec.
Ttot

sec.

2-D 8 2 0.3 3+8 1 9 48 -31 5.11 1.39 138.6 149.3
24+8 9 50 33 1.39 0.44 203.8 214.8
40+8 9 50 33 1.31 0.43 259.2 270.2

8 0.5 32 9 48 62 1.31 0.38 119.5 129.4
0.2 9 50 28 1.39 0.45 293.6 304.3
0.1 9 50 28 1.39 0.45 560.2 571.3

4 0.3 32 9 50 -19 1.58 0.68 96.8 107.0
12 9 50 73 1.35 0.41 282.0 292.6
16 9 48 139 1.39 0.39 373.2 384.0
20 9 50 110 1.39 0.40 458.2 468.8
32 9 50 154 1.43 0.40 738.1 748.7
64 9 50 144 1.39 0.40 1471 1482
16 2 0.3 24+16 9 50 99 0.93 0.30 455.5 465.4
16 8 0.3 24+16 9 50 10 1.84 0.46 1968 1979

3-D 16 2 0.2 24+8 8 9 50 136 1.42 0.39 5601 5780
12 9 50 135 1.42 0.39 9029 8731
24 9 50 134 1.42 0.39 1569* 1350*

NAzi – number of azimuthal angles, δR – ray spacing, NFSR – number of flat source regions, Npl – number of planes,
NRT – number of ray tracing sweeps, NCMFD – number of CMFD outers, εk – eigenvalue error (k2D = 1.18655, k3D = 1.18381),

max
pε , RMS

pε  – max and RMS pin power error, TRT – CPU time spent for ray tracing on a 1 GHz Pentium III PC, TRT – total

CPU time.

* Performed on an IBM Regatta system with six CPUs.
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5. Korea Advanced Institute of Science and Technology (KAIST), Korea

Name of participant(s)

Nam Zin Cho

Establishment(s)

Korea Advanced Institute of Science and Technology (KAIST)

Name of code system(s) used

CRX code.

Computational method used

Method of characteristics.

Type and level of angular approximation

Eight (8) azimuthal × 2 polar angles per octant.

Type and level of spatial discretisation

• Number of meshes per cell: 48 (see figure below).

• Number of fuel regions: 32 (see figure below).

• Number of rays/cell/direction: 50.

R3 R4

R1=0.200cm
R2=0.300cm
R3=0.400cm
R4=0.540cm
R5=0.600cm

R1 R2 R5

Convergence

• Eigenvalue: 1.0E-5 (2.19E-9 eigenvalue relative error when converged).

• Pointwise: 1.0E-5.

Machine on which the calculations were performed and (if possible) CPU time

KAIST*GALAXY cluster system (using four CPUs of 48 Intel Pentium III and IV machines).
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6. Institute of Physics and Power Engineering (IPPE), Russian Federation

Name of participant(s)

Igor R. Suslov

Establishment(s)

IPPE, Obninsk, Russia

Name of code system(s) used

MCCG3D.

Computational method used

Method of long characteristics (LgC) with DD-scheme for integration along characteristics for
2-D and plane-tracing method for 3-D.

Type and level of angular approximation

S32 Gauss formula for azimuthal angle, 16 equidistant polar directions in symmetry sector (45 grads)
in 2-D calculation. Only simplest S2 quadrature in azimuthal angle and one direction in 45-grad
sector were used in 3-D calculation.

Type and level of spatial discretisation

Forty-five (45) grads symmetry sector was used in calculations.

Each square fuel pin cell was modelled by four regions:

• Central part of pin: single cell (cylindrical) with external radii 0.45 cm.

• Peripheral part of pin: ring (sector for diagonal cells) with inner radii 0.45 cm and external
radii 0.54 cm described as 1 × 4 cell block with one cell in radial and four cells in polar
variable.

• Inner part of moderator: ring (sector for diagonal cells) with inner radii 0.54 cm and
external radii 0.62 cm described as 1 × 4 cell block with one cell in radial and four (two
for diagonal cells) cells in polar variable.

• Peripheral part of moderator: ring (sector for diagonal cells) with inner radii 0.62 and

external radii 0.63 2  cm described as 1 × 4 cell block with one cell in radial and four
cells in polar variable, limited by square 1.26 × 1.26.

The quadrilateral grid 17 × 17 was used for reflector.

Tracing step (distance between trajectories) for 2-D was 0.1 cm, for 3-D, 0.5 cm.

The non-uniform mesh was used Z-direction with number of layers equal to 17 for 192.78 cm and
total number of layers 34 as symmetry in Z-direction is not implemented.
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Convergence

2-D calculations:

• Eigenvalue: 10E-7.

• Pointwise: flux 10E-5, fission source 10E-5.

3-D calculation:

• Eigenvalue: 10E-7.

• Pointwise: flux 10E-5, fission source 10E-5.

Machine on which the calculations were performed and (if possible) CPU time

Sun Ultra 1.

Other assumptions and characteristics, comments useful for interpreting correctly the results

Cross-sections used

The following set of cross-sections were used: Transport, Nu*fission, Chi, Scattering.

Pin power is not implemented in MCCG3D up to now and pin production rates are presented.

Mesh refinement

A rather significant number of calculations were performed in 2-D to evaluate error due to space,
tracing and angular approximation and efficiency of different numerical approaches. A brief
summary will be presented here, as the evaluation is not yet finalised. Thus, presented results
should be considered as preliminary ones.

Two extra sub-problems were considered in addition to the benchmark problem: a pin cell
problem with a single pin in a square “cell” and “supercell” 6 × 6. These small problems offer the
possibility of applying more fine mesh and quadratures to improve understanding of convergence
with space and angular refinement and efficiency of different techniques. Some calculations were
also performed with coarse space mesh for the main 2-D benchmark (core) – one mesh for pin
and one mesh for moderator.

The pin production rates were rather stable so only eigenvalue results are presented.

• Convergence in azimuthal variable. This is presented in Table 1 for cell, supercell and core
calculation. It seems that Gauss’s S16 quadrature provides an accuracy near 1 pcm in 2-D
calculations.

• Convergence in polar angle. This is presented in Table 2. It is to be pointed out that the
difference between simplified (“cell” and “supercell” models) and main (“core”) benchmark –
16 polar angles in 45 grads sector provides 1 pcm accuracy for simple problem but 13 pcm for
“core” calculations.
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• Convergence in tracing. This is presented in Table 3 both with use tracing normalisation
techniques and without. It seems that normalisation is very efficient for “cell” scale, less
efficient for supercell scale and not important for core scale. It seems that tracing step 0.1 cm
provides an accuracy near 1-2 pcm.

• Space mesh refinement. Some results are presented in Table 4. It seems that for “core”
calculation the same space mesh provides less accurate results than for “simple” problems and
mesh refinement affects much more strongly in moderator (with refinement both in radial and
polar directions!) than in the pin. It is necessary to use more fine meshes to reach accuracy
near 1 pcm or use more advanced space approximation.

• Iteration convergence. C5G7 benchmark problems display very slow iteration convergence,
especially for outer iterations in 3-D problem and inner iterations for 7th group. For the 2-D
problem the Algebraic Collapsing Acceleration technique was very effective for time
reducing. Unfortunately this technique is not implemented for large-scale 3-D iterations.

Table 1. Convergence in azimuthal variable

N�
Cell Supercell Core

1 – – 1.18396
2 – 1.23591 1.18425
4 1.325982 1.23622 1.18421
8 1.325989 1.23639 1.18423

16 1.326009 1.23644 –
24 1.326014 1.23645 –

Table 2. Convergence in polar angle

N�
Cell Supercell Core

1 – – 1.18185
2 1.325882 – 1.18228
4 1.325982 1.23554 1.18408
8 1.325989 1.23584 1.18421

16 1.325991 1.23591 1.18434
32 1.326014 1.23591 –

Table 3. Convergence in tracing

Step Cell Cell,Norm SCell Scell,Norm Core Core,Norm
0.5 1.310358 1.327018 1.23455 1.23533 1.18388 1.18390
0.25 1.23515 1.23556 1.18396 1.18396
0.1 1.324918 1.327056 1.23549 1.23552 1.18392 1.18394
0.05 1.23547 1.23554
0.025 1.326758 1.327073 1.23554 1.23554
0.01 1.326996 1.327078
0.003 1.327065 1.327079
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Table 4. Convergence with mesh refinement

Space meshes per
pin/moderator in cell Cell Supercell Core

1/1 1.32680 1.23425 1.18464
1+1 × 4/1 1.23429
1+2 × 4/1 1.23430

2/2 – 1.18375
4/4 1.32603

4 × 2/4 × 4 1.32547
1+1 × 4/2 × 4 1.18599
1+1 × 4/2 × 2 1.23395
1+1 × 4/4 × 2 1.23362
1+1 × 4/8 × 2 1.23339
1+1 × 4/16 × 2 1.23329
1+1 × 4/32 × 2 1.23324
1+1 × 4/32 × 4 1.23322
1+1 × 4/16 × 8 1.23311
1+1 × 4/16 × 16 1.23292

8 × 4/8 × 8 1.32542
16 × 4/16 × 16 1.32537 –

Future work

More extended calculation with code MCCG3D and with more fine meshes and more accurate
angular quadratures are planned in the near future.
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7. Russian Research Centre “Kurchatov Institue” (RRC KI), Russian Federation

Name of participant(s)

V.D. Davidenko, V.F. Tsibulsky

Establishment(s)

RRC KI, Russia

The neutron transport problem solution by a characteristics method

A series of characteristics along which the change of a neutron flux for fixed source function is
calculated are selected in computational volume. Neutrons of an external source and neutrons of
inner groups scattering are considered to be a source of neutrons. After calculation along all of the
characteristics, the average value of the neutron flux in different zones of the computational
volume is calculated. The average value obtained for the neutron flux is used for inner groups of
scattering calculations, which is a source in the following iteration. This iterative procedure lasts
until the spatial distribution of neutrons’ stabilisation with the necessary accuracy is reached.

The equation along the characteristic is:
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(Standard labels are used here.)

Boundary conditions for ϕ(x,Ω) = ϕ0(x,Ω), for (x∈ �� �Ω,n) < 0 (n – external normal to the
boundary of computational area, ϕ0(x,Ω) – boundary condition).

At a numerical realisation all computational volume is divided into zones and Eq. (1) is integrated
along each direction. A crossing each zone by rays is fixed. An average value of neutron flux in a
zone j is determined, as the average value of a flux of the all rays crossing a zone:
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The summation is carried out on all rays i ⊂ (1……..m), crossing a zone j, a length of a segment
of crossing lj, (mj – full number of rays crossing the zone j), weight coefficients describing each
direction contribution in a total flux. Φ(rj), the neutron flux in a zone j, is considered to be a
constant inside a zone (rj ∈Vj).

Eq. (1) has the simple analytical solution:

ϕi(x) = ϕ0exp(-Σtjx) + Qji/Σtj*(1 – exp(-Σtjx))

where x∈[0,li], ϕ0 is the value of ϕ(0) on the boundary of a zone, and Qji is a constant source of
neutrons in a zone j, for direction i.
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Eqs. (1) and (2) are solved by a method of series approach calculation an integral of scattering (in
the case of isotropic scattering) the average value of a neutron flux in a zone obtained in the
previous iteration is used.

To select rays’ directions the stochastic algorithm ensuring a uniform density function with an
angular variable in 4π is realised in the UNKGRO code. At a preliminary stage of calculation for
fixed geometry the calculation of rays (points where rays cross zones) is carried out, the
consequent iterative procedure is performed using these previous computations.

For the solution to small group problems, problems with an external neutron source the effective
iteration scheme of acceleration inner groups is applied. For multi-group problems on an
eigenvalue, the practice of calculations has shown that the most effective algorithm is the
overlapping inner group of iterations with iterations on a source of division, i.e. without internal
iterations.

The UNKGRO program solves three-dimensional problems with any geometry using the
multi-group approach, and also with an anisotropic source of neutrons. The size of problems is
determined by the main memory of the computer. Personally for PC-650 with the main memory
256 ���������	����
���	�������������	
���	��	������	�
�����������	��
��������	������������	��zones
about 500 000 in 15 energy groups. As the information about the characteristic interceptions
of computational volume is kept on the hard disk, in fact, there is no limit on the number of
characteristics.

The calculation of problems shown in the test C5G7 MOX was made with a spatial partition
289 377 registration zones and 70 000 characteristics for a two-dimensional problem and 598 650
registration zones and 120 000 characteristics for a three-dimensional problem. It took about
36 hours to solve the 2-D problem, for 3-D it took about 42 hours, CPU on PC-650.
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8. Argonne National Laboratory (ANL), USA

ANL-1

Name of participant(s)

Micheal A. Smith,1,† Nicholas Tsoulfanidis,1 Elmer E. Lewis,2

Giuseppe Palmiotti,3 Temitope Taiwo,3 Roger Blomquist3

Establishment(s)

1University of Missouri-Rolla
2Northwestern University
3Argonne National Laboratory
†Now at Argonne National Laboratory

Name of code system(s) used

VARIANT-ISE: A prototypic version of the VARIANT code.

Computational method used

Response matrix form of the variational nodal method. The nodal flux is solved with an integral
transport treatment coupled to interface spherical harmonics. These interface nodal spherical
harmonics are then coupled together via red-black partial current iterations.

Type and level of angular approximation

P7 in 2-D, Square Legendre-Chebychev S16.
P11 in 2-D, Square Legendre-Chebychev S16.
P11 in 2-D, Square Legendre-Chebychev S26.

Type and level of spatial discretisation

A variational nodal method utilising finite element sub-elements within each node.

• Two-dimensional:

– A cubic Lagrange multiplier nodal interface approximation (spatial).

– A consistent source approximation of the finite element mesh.

– A triangular finite element mesh with quadratic basis functions: 113 DOF (degrees of
freedom).
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Convergence

• Eigenvalue = 10E-6.

• Pointwise:

– Pointwise fission source = 10E-5.

– Average fission source = 10E-5.

Machine on which the calculations were performed and (if possible) CPU time

Sun Sparcstation 60 running Solaris 8.

S16 P7 2-D = 24453.24 seconds/9 hours.

S16 P11 2-D = 80532.43 seconds/23 hours.

S26 P11 2-D = 79284.06 seconds/22 hours.

All times are total computational times. The excessive times reported are caused by the lack of
acceleration on the partial current and source and a poor draft of the FORTRAN used to get the
response matrices. With improvements we expect to see a factor of 10-50 decrease in
computational time. Response matrix formation times are very small as compared to those of the
standard PN variational treatment. Recent improvements in the source implementation reduced the
computational time of the S16 P11 2-D solution to less than three hours.

Other assumptions and characteristics, comments useful for interpreting correctly the results

The three different results are shown to give a sense of the dependence of the solution on
the internal and external angular approximations. The spatial mesh and Lagrange multiplier
approximation are sufficiently refined such that very little benefit is gained by improving either of
the two approximations.

Work is progressing to refine the response matrix formation routine and implement an acceleration
scheme for the source and partial currents. For the most part the times reported above are not a
fair estimate of the ability of the new method.
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ANL-2

Name of participant(s)

Micheal A. Smith,1,† Nicholas Tsoulfanidis,1 Elmer E. Lewis,2

Giuseppe Palmiotti,3 Temitope Taiwo,3 Roger Blomquist3

Establishment(s)

1University of Missouri-Rolla
2Northwestern University
3Argonne National Laboratory
†Now at Argonne National Laboratory

Name of code system(s) used

VARIANT-SE: A prototypic version of the VARIANT code.

Computational method used

Response matrix form of the variational nodal method with a spherical harmonics angular
approximation.

Type and level of angular approximation

P11 in 2-D and P5 in 3-D.

Type and level of spatial discretisation

A variational nodal method utilising finite element sub-elements within each node.

• Two-dimensional:

– A quadratic Lagrange multiplier nodal interface approximation (spatial).

– A lumped source approximation of the finite element mesh (eight regions with flat
spatial dependence).

– A triangular finite element mesh with quadratic basis functions: 113 DOF (degrees of
freedom.
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• Three-dimensional:

– A linear Lagrange multiplier nodal approximation.

– A lumped source approximation of the finite element mesh (10 regions).

– A prismatic finite element mesh with quadratic basis functions in xy and linear basis
functions in z: 339 DOF.

Convergence

• Eigenvalue = 10E-6.

• Pointwise:

– Pointwise fission source = 10E-5.

– Average fission source = 10E-5.

Machine on which the calculations were performed and (if possible) CPU time

Sun Sparcstation 60 running Solaris 8.

2-D = 182420.50 seconds/51 hours, 3-D = 571364.63 seconds/159 hours.

All times are computational times

Other assumptions and characteristics, comments useful for interpreting correctly the results

Due to cancellation of error it is believed that better results can be achieved with lower angular
approximations. It is clear from single pin cell calculations that an angular approximation of
around P27-P31 is necessary to yield a proper eigenvalue. This is not possible with this method at
this time.

The solutions for both the two-dimensional and three-dimensional problems were limited because
of the available amount of disk space. Both calculations reported in eight suffered from low
memory availability resulting in a significant amount of time being spent transferring data to and
from the disk. Finally, the node size in the z direction and the source approximation were
significantly constrained for the three-dimensional problem because of a sheer lack of available
disk space (needs several Gb).

Only the PN angular solutions were provided because it was found that the SPN approximation
proved to be quite inaccurate for this specific problem. Not necessarily for heterogeneous
problems such as this, but a more specific problem was found with the seven-group cross-set used
for this benchmark problem. Two-group and Twelve-group solutions have shown that the SPN

method can provide accurate solutions.
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ANL-3

Name of participant(s)

Micheal A. Smith,1,† Nicholas Tsoulfanidis,1 Elmer E. Lewis,2

Giuseppe Palmiotti,3 Temitope Taiwo,3 Roger Blomquist3

Establishment(s)

1University of Missouri-Rolla
2Northwestern University
3Argonne National Laboratory
†Now at Argonne National Laboratory

Name of code system(s) used

ASEVANT: A prototypic version of the VARIANT code.

Computational method used

Response matrix form of the variational nodal method with a spherical harmonics angular
approximation.

Type and level of angular approximation

P13 in 2-D.

Type and level of spatial discretisation

A variational nodal method utilising finite element sub-elements within each node.

• Two-dimensional:

– A cubic Lagrange multiplier nodal interface approximation (spatial).

– A consistent source approximation of the finite element mesh.

– A triangular finite element mesh with quadratic basis functions: 113 DOF (degrees of
freedom.



106

Convergence

• Eigenvalue = 10E-6.

• Pointwise:

– Pointwise fission source = 10E-5.

– Average fission source = 10E-5.

Machine on which the calculations were performed and (if possible) CPU time

Sun Sparcstation 60 running Solaris 8.

2-D = very long.

All times are computational times

Other assumptions and characteristics, comments useful for interpreting correctly the results

We basically found that our previous result was too “good” because of cancellation of error.
A more rigorous treatment of the source corrected most of the problems and thus we provide a
more “accurate” solution. As can be seen the result has become worse with a better approximation.
To obtain an accurate solution, a much higher order angular approximation is necessary which is
clearly not possible with this method.
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9. Los Alamos National Laboratory (LANL), USA

Name of participant(s)

Jon A. Dahl, Raymond E. Alcouffe

Establishment(s)

Transport Methods Group
Los Alamos National Laboratory
Los Alamos, NM 87545

Calculation details

Introduction

In early 2001 the Expert Group on 3-D Radiation Transport Benchmarks of the Nuclear Energy
Agency solicited participants for a proposed benchmark [1]. The benchmark, known as C5G7
MOX, is intended to be a basis for measuring current transport code abilities in the treatment of
reactor core problems without spatial homogenisation. We participated with the code transport
code PARTISN [2]. PARTISN (PARallel TIme Dependent SN) solves the linear Boltzmann
transport equation in static and time-dependent forms on one-, two- and three-dimensional
orthogonal grids using the deterministic (SN) method. A variety of spatial discretisation methods
are incorporated into PARTISN, however all calculations performed here used the diamond
difference approach, coupled with a volume fraction method for non-Cartesian problem geometries.
Acceleration of the source iterations is accomplished with diffusion synthetic acceleration (DSA).

Description of work

For the two-dimensional C5G7 MOX problem we used an X-Y Cartesian grid. Rather than creating
a “stair stepped” grid to represent each fuel pin, we began with an unstructured quadrilateral grid
created using ICEM CFD Engineering grid generation tools. This unstructured grid more closely
represents the actual geometry of each water channel/fuel pin combination. We then overlay a
Cartesian mesh onto the unstructured grid and calculate to volume fractions of each material
where a Cartesian mesh cells is intersected by an unstructured mesh material boundary. This
methodology allows the preservation of mass without changing the density in cells which are not
intersected by actual material interfaces. We generated three grids for the two-dimensional case, a
coarse, medium and fine, corresponding to a 5 × 5, 10 × 10 and 15 × 15 grid in each water
channel/fuel pin cell, and 30 mesh cells in each direction of the water reflector. An example of the
medium mesh grid in a typical water channel/fuel pin region can be found in Figure 1. The cells
containing an X indicate mesh cells where volume fractions of fuel and water have been calculated.
The unmarked cells contain just one material, either the appropriate water or fuel.

The grid for the three-dimensional problem was generated in the same way, beginning with a
three-dimensional unstructured mesh and calculating the corresponding volume fractions for
Cartesian X-Y-Z mesh cells intersecting material interfaces. We performed calculations on two
three-dimensional grids, one coarse and one medium, which, as in the two-dimensional case,
contained 5 × 5 and 10 × 10 mesh cells respectively, in each water channel/fuel pin cell, and
30 mesh cells in each direction of the water reflector. The coarse mesh fuel region contained
20 cells in the Z direction, for a total of 200 × 200 × 50 or six million cells. The fuel region of the
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Figure 1. Representation of fuel pin meshing

medium mesh was comprised of 50 cells in the Z direction for a total of 370 × 370 × 80, or
10 952 000 cells. We also generated a fine three-dimensional mesh, consisting of 17 496 000
cells, but two-dimensional convergence studies indicated that a mesh this fine is not required.

We ran each problem using the square Tchebechev-Legendre quadrature set [3] and diamond
difference spatial differencing. The pointwise fluxes were converged to an error of 1.0E-05.
The diffusion equations for the DSA were solved using a parallel multi-grid technique described
by Alcouffe [4]. Varying SN orders for each mesh were run to determine that spatial and angular
convergence was achieved.

Both the two- and three-dimensional problems were run on the Bluemountain computer, located
at the Los Alamos National Laboratory. Bluemountain consists of 48 SGI Origin 2000 boxes with
128 processors each. The two-dimensional problems were run with 16 processors, while the
three-dimensional problems were run with 126 to 768 processors, depending on mesh size and
SN order.

Computational results

For this benchmark, we report the eigenvalues and pin powers for the medium mesh grids run
with S26 square Legendre-Tchebychev quadrature. Table 1 presents the eigenvalues for both the
two- and three-dimensional cases.

Table 1. K eigenvalues for 2-D/3-D C5G7 MOX benchmark problems

Dimension k eigenvalue
2-D 1.18637
3-D 1.18362
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In Table 2, the normalised minimum and maximum pins powers for the two-dimensional coarse
and medium mesh and the three-dimensional coarse mesh are shown. These results were also
generated with a quadrature order of S26. Complete pin power results can be found in Tables 3-7.

Table 2. Maximum and minimum normalised pin
powers for 2-D/3-D C5G7 MOX benchmark problem

Mesh Maximum Minimum
2-D medium mesh 2.5025 0.2319
3-D medium mesh 2.5018 0.2318
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10. Los Alamos National Laboratory (LANL), USA

Name of participant(s)

Todd A. Wareing, John M. McGhee

Establishment(s)

Los Alamos National Laboratory

Name of code system(s) used

2-D benchmark: Pericles.

3-D benchmark: Attila.

Computational method used

SN.

Type and level of angular approximation

We examined several different quadrature sets and level of approximations and have settled on
using the Square-Tchebyshev-Double-Legendre quadrature set.

For the 2-D calculations, we provide results for S16 and for 3-D we provide results for S12.

Type and level of spatial discretisation

For 2-D, we use bi-linear discontinuous finite element spatial differencing on quadrilateral
elements. The grids were created using ICEM CFD Engineering QuadTM. We provide results for
two different mesh refinements. The coarse 2-D mesh contains 17 465 quads and the fine 2-D
mesh contains 62 079 quads. See Figure 1 for a subsection of the coarse 2-D mesh and Figure 2
for a subsection of the fine 2-D mesh.

For 3-D, we use linear discontinuous finite element spatial differencing on tetrahedral elements.
The grid was created using a combination of ICEM CFD Engineering’s meshing modules.
The mesh contains 954 427 tetrahedra. A subsection of the 3-D mesh is given in Figure 3.

Convergence

• Eigenvalue: 1 × 10–5.

• Flux pointwise: 1 × 10–4.

Machine on which the calculations were performed and (if possible) CPU time

SGI with 250 MHz R10000 processor. CPU times are difficult to access and are not included.
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Figure 1. Subsection of coarse 2-D mesh

Figure 2. Subsection of fine 2-D mesh
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Figure 3. Subsection of 3-D mesh

Other assumptions and characteristics, comments useful for interpreting correctly the results

All of the meshes were created to preserve the volume, and hence, the mass of the materials.
We performed much of the parameter studies for the 2-D problem. Here we used two different
mesh refinements and varying orders of angular quadrature. Table 1 provides our eigenvalue
results for the 2-D benchmark problem as a function of both mesh and angular refinement. For the
3-D benchmark, the mesh is similar in refinement to that of the coarse 2-D mesh.

Table 1. Eigenvalue results for 2-D benchmark as a
function of mesh refinement and angular refinement

SN order Coarse mesh Fine mesh
04 1.18454 1.18424
08 1.18606 1.18610
12 1.18628 1.18641
16 1.18642 1.18658
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11. Oak Ridge National Laboratory (ORNL), USA

Name of participant(s)

Yousry Y. Azmy,1 Jess C. Gehin,1 Roberto Orsi2

Establishment(s)

1Oak Ridge National Laboratory 2ENEA Centro Dati Nucleari
P.O. Box 2008, MS 6363 Via Martiri di Monte Sole, 4
Oak Ridge, TN 37831-6363 40129 Bologna, Italy

Name of code system(s) used

• 2-D: DORT.

• 3-D: TORT-MPI.

• Pre- & post-processing: BOT3P.

Computational method used

SN.

Type and level of angular approximation

S16 fully symmetric quadrature (distributed with DOORS package).

Type and level of spatial discretisation

• Two-dimensional (see Figure 1):

− Theta-weighted with theta = 0.9 (default).

− Computational cells per lattice cell = 27 × 27.

− Total computational cells = 930 × 930.

• Three-dimensional (see Figure 2):

− Linear nodal method.

− Computational cells per lattice cell = 5 × 5 × 40.

− Total computational cells = 182 × 182 × 40.
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Figure 1

Figure 2
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Convergence

Eigenvalue Fission Flux
2-D 7.1 E-8 2.1 E-7 4.0 E-6
3-D 4.3 E-7 2.4 E-4 8.1 E-4

 
Machine on which the calculations were performed and (if possible) CPU time

 Compaq AlphaServer SC, with ES40 nodes.

 CPU hours: 2-D – 17.2, 3-D – not available.

Other assumptions and characteristics, comments useful for interpreting correctly the results

All calculations performed in 64-bit arithmetic precision.

DORT: converged in 56 outer iterations with forced four inner iterations per outer.

TORT-MPI executed in parallel on 12 processors; multiple runs necessary due to time limit per
run; total number of iterations and CPU time unavailable because output file lost in system crash.

Extensive study of solution convergence with model refinement reveals rapid convergence of
eigenvalue with mesh refinement, but slower convergence with rising order of angular quadrature.
Hence, coarser models executing much faster than those submitted here were only slightly less
accurate.
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12. Indira Gandhi Centre for Atomic Research (IGCAR), India

Participant(s)

P. Mohanakrishnan

Establishment(s)

Reactor Physics Division
Indira Gandhi Centre for Atomic Energy
Kalpakkam, T.N., 603102, India

Name of code system(s) used

COHINT (see Ref. [1]).

Computational method used

Interface Current Method with PN half space expansion of angular fluxes at region interfaces is
used to solve the neutron transport equation in X-Y geometry by dividing the problem into small
regions. Full details of the method are given in Ref. [2]. The code RICANT which solves X-Y
geometry problems has been submitted to the NEA Data Bank [3]. The COHINT computer code
includes RICANT as well as another code to solve the neutron transport equation in 2-D cylindrical
pin cluster geometry (as for example in PHWR fuel assemblies or FBR control rods).

Type and level of angular approximation

A P2 half space expansion has been used for angular fluxes at region interfaces. Following is the
six-term expansion found suitable for 2-D geometries with severe heterogeneities [2].

Ψ (β,φ) = a0 + a1cosβ cosφ + a2 cosβ sinφ + a3cos2β + a4 cos2β sin2φ + a5 cos2β cosφ sinφ

Ψ is the neutron angular flux at region interface (half space). The expansion coefficients “a” are
different in the two half spaces made by the region interface. Angles β and φ define the neutron
direction with respect to the region surface normal. It had also been found that a four-term
expansion consisting of the first four terms above gives practically the same results as the full
six-term expansion. Four-term expansion has been used in the present analysis. The outgoing
neutron angular flux at a region interface is contributed by incoming fluxes at the surfaces and
neutron source inside the region. The matrix equation for iterative solution is set up by making
use of the superposition principle of neutron angular fluxes.

Type and level of spatial discretisation

Neutron flux and source is assumed to be flat inside a region. A unit cell of the lattice was divided
into 25 regions. A diagram of the unit cell discretisation is shown in Figure 1.

In the moderator/reflector near core, region size of 0.521 × 0.521cm2 was used. Beyond 11.42 cm
from core 1.0 × 1.0 cm2 regions were used. Total number of meshes in X and Y directions were
201 each. Half-core symmetry was made use of in COHINT. The resulting number of total
regions for solution were 20 301 in half core.
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Figure 1. Unit cell discretisation – 1.26 � 1.26 cm2

0.15144 cm

0.31904 cm

0.31904 cm

Convergence

• Eigenvalue – less than 3 × 10–6.

• Flux region wise – less than 4 × 10–4.

Summary of results

Eigenvalue = 1.17530.

Peak pin relative fission rate = 2.395 in UO2 assembly.

The above results are with the use of transport cross-section in COHINT. Eigenvalue with the use
of total cross-section and corresponding adjustment of self-scattering cross-section in the group is
1.20362.

In the EXCEL tables, only the results using the transport cross-section are presented.

Machine on which the calculations were performed and (if possible) CPU time

SGI, CPU time 190 minutes (half-core symmetry).

Other assumptions and characteristics, comments useful for interpreting correctly the results

The fuel region cross-section has been approximated as square as against the actual circle. Only 2-D
results are presented here.
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References
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13. TEPCO Systems Corporation (TEPSYS), Japan

Name of participant(s)

Shinya Kosaka

Establishment(s)

TEPCO Systems Corporation (since 1/10/2001; previously Toden Software, Inc., which merged
with another TEPCO group company on that date.)

Name of code system(s) used

CHAPLET.

Computational method used

Method of characteristics.

Type and level of angular approximation

• Sixteen (16) polar angles/90°.

• One-hundred twenty-eight (128) azimuthal angles/360°.

• Width of path interval: 1 mm.

Type and level of spatial discretisation

Fuel pin cell Moderator cell

0.40 cm

0.54 cm

0.61 cm

Fuel reg.

Moderator reg.

(Each cylindrical region is divided
into 8 azimuthal regions.)

(Background moderator is divided into 10 × 10 regions.)

Convergence

• Eigenvalue: 1.0E-6.

• Pointwise: Group-wise scalar flux – 1.0E-5.
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Machine on which the calculations were performed and (if possible) CPU time

SUN Ultra-80 450 MHz, 3 CPU parallel calculation. CPU time: 167minutes.

Other assumptions and characteristics, comments useful for interpreting correctly the results

The Direct Neutron Path Linking (DNPL) technique [1] is applied to the CHAPLET code.
DNPL is a memory size-saving technique for large-scale characteristics calculations. The idea of
this technique came from sharing the neutron path information among assemblies (unit modules)
with the same configuration. When cyclic ray tracing, such as that applied to the CACTUS [2]
code, is used for preparing neutron paths to each unit module, the whole core characteristics
calculation can be performed by linking these module data without holding the core-wide neutron
flight path data (see Figures 1 and 2).

As a result, a whole-core characteristics calculation can be made separately among assemblies
with small memory size. In addition, the parallelisation of the flux solution was attempted to the
CHAPLET code, resulting in significant reduction in the wall-clock time of the calculation.

In this 2-D benchmark analysis, the occupied memory size was about 300 Mbyte.

Figure 1. Ray tracing arrangement in CACTUS and DNPL technique

1. an original neutron flight path
2. horizontal symmetry of path 1
3. 90 degree clockwise rotate of path 1
4. 90 degree clockwise rotate of path 2
5. a tracking path group (superposing 1-4)

Cyclic ray tracing arrangement

1 2

5

3 4

Assembly A Assembly B
Direct linking

Figure 2. Illustration of DNPL technique in a multi-assembly system

E

A B C D

Assembly A Assembly B Assembly C Assembly D

Assembly E
Zoom in

Direct Neutron Path Linking

Neutron
flight path

Multi-assembly system



127

References

[1] Kosaka S., “Transport Theory Calculation for a Heterogeneous Multi-assembly Problem by
Characteristics Method with Direct Neutron Path Linking Technique,” Journal of Nuclear
Science and Technology, Vol. 37, No. 12, p. 1015 (2000).

[2] Halsall, M.J., AEEW-R 1291 (1980).



128

14. Russian Research Centre “Kurchatov Institue” (RRC KI), Russian Federation

Participant(s)

Victor F. Boyarinov

Establishment(s)

Russian Research Centre “Kurchatov Institute”
Nuclear Reactor Institute
Department of Physical & Technical Researches of Advanced Reactors
123182, Moscow, Russia

Names of code system(s) used

For computation this benchmark the following codes were used: options RACCIA and DIC-PN of
WIMS-SH [1] system of codes and SUHAM-2D [2] code. The WIMS-SH system of codes was
used for computation of the zeroth, first and second trial matrices for cells )()()( ˆ,ˆ,ˆ 210 ϕϕϕ .
SUHAM-2D was used both for computation of the third trial matrices for cells with homogeneous
cross-sections and for solving the finite-difference equations of Surface Harmonics Method
(SHM) with four trial functions.

Computational method used

Surface Harmonics Method with four trial functions was used.

The Surface Harmonics Method [3] is the method for the solving neutron transport equation in a
reactor core. A characteristic feature of SHM is that, in general, it does not use the procedure of
spatial homogenisation.

In SHM, neutron distribution in a reactor core is presented as a superposition of trial functions:

( ) ( )∑∑
= =

ϕ=Φ
I

i

N

n

inin
N waw

1 0

(1)

Here ( )winϕ  are the trial functions describing the neutron field in i-th cell, coefficients ain are the
amplitudes of trial functions, n is the trial function number and (N + 1) is the number of trial
functions for every cell.

Each trial function is taken as a solution of the neutron transport equation in the internal cell area
with certain boundary conditions on the cell surface. Different trial functions differ from one
another by the boundary condition.

On Figure 1 schemes for neutron currents incoming through the cell boundary for the first four
trial functions in square lattice are shown. These schemes for neutron currents incoming through
the cell boundary are given for each energy group g; in so doing, neutron currents incoming
through the cell boundary in other groups equal zero. Then, value g is changed. Therefore, the
real number of group trial functions equals the number of schemes for incoming neutron currents
shown in Figure 1 multiplied by the number of energy groups. Thus, trial matrices appear.
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Since the actual number of the trial functions is limited, at substituting the quest solution in the
neutron transport equation, a residual appears. The minimisation procedure for this residual gives
the finite-difference equations of the SHM.

Finite-difference equations of SHM with four trial functions have the following form.
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Here k is the number of central cells, i is the lateral side number of central cells, ji is the cell
number which has a common side “i” with the central cell, M is the number of lateral sides of the
cell, Sk is the square of one lateral side, Vk is the volume of the cell and h is the mesh of the cell.

Vectors ( )1
kk X,

��
Φ  are unknown.

Figure 1. Schemes for neutron currents incoming through the
cell boundary for the first four trial functions in square lattice
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While deriving the finite-difference equations, certain recipes for the calculation of coefficients of

these equations (effective cell characteristics) are obtained. These coefficients ( )
k

i
k D̂,Σ̂  are

functionals of trial functions.

It should be noted that all SHM characteristics depend on the unknown value keff and, thus, an
additional iteration layer must be organised.

Effective cell characteristics are the characteristics of heterogeneous cells, and the obtained
finite-difference equations must be solved with only one point per each cell. Reducing calculational
mesh size is inadmissible and may give incorrect results. All additional information, which could
be obtained in the homogenisation method by decreasing the mesh size to zero, is already
contained in effective cell characteristics (and not only this information).

Type and level of angular approximation

For calculation of elements of the zeroth trial matrix ( )0ϕ̂  for cells the RACCIA option of the
WIMS-SH system of codes was used. In RACCIA, G3 approximations of Surface Pseudo Sources
Method (SPSM) are used for solving the neutron transport equation; the angular variable G3

approximation corresponds to the P3 approximation.

P2 approximation of Spherical Harmonics method (option DIC-PN in WIMS-SH) was used for
the calculation of elements of the first and second trial matrices for cells ( )1ϕ̂ , ( )2ϕ̂ .

A procedure of spatial homogenisation and group diffusion approximation was used for
calculation of elements of the third trial matrix for cells ( )2ϕ̂ .

SUHAM-2D was used for solving the finite-difference equations of SHM with four trial
functions, an in doing so P2 approximation was used for cell boundaries.

Type and level of spatial discretisation

For calculation of elements of the zeroth trial matrix ( )0ϕ̂  for cells the RACCIA option of the
WIMS-SH system of codes was used. In RACCIA, G3 approximations of Surface Pseudo Sources
Method are used for solving the neutron transport equation. In this method, surface Green
functions are used in every homogeneous zone of the cell.

For calculation of elements of the first and second trial matrices for cells ( )1ϕ̂ , ( )2ϕ̂  a P2

approximation of the Spherical Harmonics method (option DIC-PN of WIMS-SH system of
codes) was used. Angular moments of neutron distribution function are presented as superposition
of Bessel functions in each energy group and each homogeneous zone of the cell. The source of
neutrons in each energy group, which appears in this group due to scattering of neutrons in other
groups and fission of nuclei, is presented in the following form:

( )
ρ

+ρ=ρ
1

QQ BAQ
(7)

The procedure of spatial homogenisation was used for the calculation of elements of the third trial
matrix for cells ( )3ϕ̂ ; WIMS-SH was used for the preparation of homogeneous group cross-sections
for cells and SUHAM-2D was used for solving group diffusion equation in cells with corresponding
boundary conditions. In this case the cell was divided into 100 square meshes (10 × 10).
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SUHAM-2D was used for solving the finite-difference equations of SHM with four trial functions
and with one point per each cell in a whole volume. It should be noted that reducing calculational
mesh size in this stage is inadmissible and may provide incorrect results.

Convergence

The following relative accuracies of convergence were used for solving the finite-difference
equations of SHM: 10–6 for eigenvalue and 10–5 for group local fluxes. For keff in the additional
iteration layer a relative accuracy of 10–5 was used.

Machine on which the calculations were performed and CPU time

Pentium-4 1500 Mhz was used for calculation of this benchmark. Total CPU time is 8 minutes
and 20 seconds.
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Name of code system(s) used

Structure.

Computational method used

The PSn method is a specific synthesis of the discrete ordinates and collision probability methods.
By analogy with the discrete ordinates method, flux angular distribution at the cell boundary is
presented in discrete form (N angular directions). The flux is assumed to be constant in each n-th
angular direction. The coefficients responsible for the neutron transport from one cell boundary to
others, and from the inner volume of a cell to its boundaries in each angular direction are derived
by balance equations of collision probability method.

Neutrons from an external source and neutrons from inner-group scattering are considered to be a
source of neutrons. After calculation of one-side neutron currents throw, all cell boundaries of an
average neutron flux in the elementary cells are computed. The average neutron flux is used to
calculate a source of inner-group scattering in the following iterations.

Let computational volume consists of a set of elementary cells. Using the approach of isotropic
scattering, the average flux in an elementary cell for every energy group is derived from the set of
Eqs. (1)-(2):
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where S is the area of the cell boundary, V is the cell volume, i, j are indices of the cell boundary,
+−
jnjn JJ  ,  are the outlet and inlet neutron cell currents in n-th angular direction ( )1, +ΩΩ nn

��
, n = 1,...,

N, N is the number of directions dividing angular space on the cell boundary, Φ  is an average
neutron flux in the cell, and Q is an average neutron source in the cell.

Coefficient nm
ji

→
→α  is the probability for a neutron entering through i-th boundary in m-th angular

direction to escape through j-th boundary in n-th angular direction without any collision.

Coefficient n
jβ  is the probability for a neutron born in a cell to reach the j-th boundary without

any collision and escape in n-th angular direction.

The third term in Eq. (2) takes into account the influence of the flux linear change Φ∇ ij  between

I-th and j-th boundaries. It is essential, if the size of cell is greater than 0.5-1 neutron free paths.

The set of Eqs. (1)-(2) is supplemented by conditions of the current continuity at cell boundaries
and boundary conditions of the computational volume.

Obtained inlet and outlet currents are used for calculation of an average neutron flux and flux
linear change between different boundaries of the elementary cell:
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The set of Eqs. (1)-(4) is solved by a method of consequent approaches at simultaneous correction
of inner part of neutron source Q.

The level of angular approximation has been derived from serial calculations with different
angular nodalisation: PS12, PS24, PS36, PS72 (index presents a number of angular directions of
one-side neutron currents on a boundary of the elementary cell). Eigenvalues resulting from last
two calculations are not practically different from each from other (less than 0.0001). Figure 1
presents the type of angular approximation.

Figure 2 presents the spatial mesh for one lattice zone. So, every regular lattice zone consists of
16 elementary calculate cells.

The accuracy of both eigenvalue and pointwise (e.g. flux) is equal to 10E-6.

Machine on which the calculations were performed and CPU time

The calculations were performed using a Pentium III 800 MHz, 256 MB RAM. The calculation
time is about 23 hours for a two-dimensional problem of PS36 angular approximation.
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Figure 1. Type of angular approximation of one-side
neutron currents on a boundary of the elementary cell
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Name of code system(s) used

GEFCOP.

Computational method used

General First Collision Probabilities [1].

In this method the neutron flux is approximated with a set of the orthogonal polynomials in every
calculation zone. Thus the set of algebraic equations are a result of kinetic equation approximation.
This algebraic system contains both the average zone neutron fluxes and the higher spatial
moments of neutron flux as well. The coefficients of this algebraic equation system are “general
first collision probabilities”.

This method is demonstrated when a one-group problem with isotropic internal sources and
isotropic surface source is considered:

( )[ ] ∫∫ →′Ω′′+→′′+′′′=′
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πσφφ (1)
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π
 – usual kernel of the FCPM integral equation.

GFCPM can be applied to the set of integral equations. The main assumption of this method is
that the flux is approximated by polynomials of the Cartesian co-ordinates in every uniform mesh:
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and the orthogonal relation is valid:

ηηηη δ ′=∫ rdrfrf t

V

t

t

���
)()( (3)

The expansion (2) is substituted in the system (1); every equation is multiplied by function ftη

consequently; and the integration over “t” mesh is carried out. So, if Eq. (3) is taken into account,
the set of linear algebraic equations arises:
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The coefficients of the set of linear equations are so-called generalised first collision probabilities.
It was shown that if )(rf t

�
η  are the polynomials of Cartesian co-ordinates in the cell plane then

calculation of the probabilities expressed in the co-ordinates ϕ, yϕ, xϕ, ϕx′ , λ connected with the

flight direct neutron is reduced to the 2-D numerical integration. Here, ϕ is the angle between
neutron flight direct projection on the (x,y) plane and x-axis; xϕ, yϕ, z are co-ordinates of point r
in the Cartesian system turned around z-axis by ϕ angle; zyx ,, ϕϕ ′′  are the same for point r′, so:

ϕϕϕϕ xxyy ≤′=′ ;

After some analytical rearrangement, equations for the general probabilities are reduced to the
2-D numerical integration:

ϕϕ
ηηηη ϕϕ dydyPP tttt ),(∫∫ ′←
′←

′
′ =

� (5)

The subintegral function is reduced to the combinations of trigonometric function ϕ with Bickley
functions of different orders from the next arguments: “optical” distances along neutron fly
direction projection on the (x,y) plane from intersection of this projection with neutron birth zone
boundary to the intersection of this projection with the neutron first collision zone boundary
subintegral function. If there is a complex geometry cell (for example, cluster), then nothing can
be predicated about behaviour of functions ( )ϕ

ηη ϕ yP tt ,′←
′← . Thus there are no reasons for their

approximation by higher-order polynomial rather then linear polynomial or constant.

Algorithm of numerical integration of the “general first collision probabilities” is based on the
interpretation of the Monte Carlo method as a realisation of the standard quadrature formula for
multi-dimensional integral calculations. The co-ordinates of the mesh points are defined with
the use of “uniform” distributed sequences [2]. The universal combinatorial geometry module
SCG-5 [3] is used for geometry description in this code.

Type and level of angular approximation

The algorithm is based on the MMC interpretation as a realisation of the standard quadrature
formula for multi-dimensional integral calculations. Let us make the change of variables in Eq. (5):

),( 21 γγϕϕ =  and ),( 21
γγϕϕ yy =
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These variables are co-ordinates of the points in the unite cube and the following relation is valid:

212
γγ

π

ϕϕ dd
S

ddy

j

=
(6)

After this change of variables all integrals are calculated over the unit cube with the use of the
standard quadrature formula: if χ(n) is the significance of the subintegral function in the mesh
point number n, then the integral meaning is the average arithmetical value χ(n) over all mesh
points. The co-ordinates of the mesh points are defined with the use of “uniform” distributed
sequences. There are codes used for the integral calculations on the mesh of Hemmersly-Holton,
Korobov, Sobol (LPτ-sequences) [2]. It was shown in some works that the use of these sequences

yields a high integration convergence order ( )ε−≈ 1
1

N
 convergence to zero. Thus this algorithm

and MMC algorithm differ only in the choice of mesh points; it is therefore possible to use the
universal combinatorial geometry module SCG-5 [3] for geometry description in the calculation
of probability codes without any essential change (this module is used in the MMC codes).

Type and level of spatial discretisation

Every fuel-pin cell has been divided into two calculation zones: the fuel zone and the moderator
zone. The flat neutron flux approximation is used in these zones. The ability of geometrical
module SCG to take into account the symmetrical properties of the system is used. There are
therefore 2 346 unknown values in the fuel-pin area.

Linear flux approximation is used in the moderator. It has been divided into ten layers and two
linear functions are used in every layer. The unknown values are neutron average fluxes over
every layer and two spatial moments of the neutron flux. There are thus 30 unknown values in the
moderator and the common number of unknown values is 2 376.

Convergence

The algorithm of the calculation integration uses Korobov generator of the “uniform distributed
sequences”. It is necessary to use ~100 000 trajectories to reach the convergence of eigenvalue
10 E-5.

Machine on which the calculations were performed and (if possible) CPU time

Pentium-4 1500.
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Name of the code system(s) used

HELIOS has been used to obtain benchmark solutions. The version of HELIOS used in this
�������	
�	 	����
�	����
��	��������	��	Studsvik Scandpower to analyse this problem – it skips
the resonance and depletion calculations. HELIOS typically is used for lattice burn-up calculations
using 45 or 112 energy group nuclear data library based on ENDF-B/VI. In this particular study
HELIOS uses a special cross-section library where the isotopes and their cross-sections are the
materials cross-sections provided in the benchmark specification.

HELIOS is a two-dimensional (2-D) current-coupling collision-probability code. Current coupling
order “4” has been used for these calculations.

Since the problem appeared to be too large for our computational capabilities, it was decided to
examine only the diagonal half of it (1/8 of the core). HELIOS allows the user to model fuel
assemblies in different ways. Varying degrees of complexity can be used to define the fuel
assembly. Usually, the components in a HELIOS assembly will be the pin cell consisting of fuel,
gap, clad and surrounding moderator. The fuel, clad and moderator can be subdivided in numerous
ways into meshes (called “regions” in HELIOS jargon). In the problem described here, two
regions were used – fuel-clad mixture and moderator – as given in the benchmark specifications.
The fuel-clad region is divided into three annular meshes. Three cases with different geometry of
the moderator region were studied. A coarse mesh was considered for the first case, as shown in
Figure 1. In this case the moderator region is divided into four meshes. For the second case (fine
mesh) the moderator region was divided into eight meshes (Figure 2). In the last case the
moderator was again divided into eight meshes but in different way – “sun mesh” (Figure 3).
For all the three cases HELIOS used two different coupling orders – “2” and “4”. The best results
could be obtained using coupling order “0” (CPs without current coupling), however, because of
memory limitations only coupling orders “2” and “4” were examined in detail. The results
presented in the attached Excel file are obtained with coupling order “4”. Other coupling orders
were also used and calculations with them were performed for sensitivity studies.

Machine on which the calculations were performed and (if possible) CPU time

The machine on which the calculations were performed is IBM RS6000. CPU time is 4.74 min.
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Figure 1. Case 1 geometry of the fuel pin layout – coarse mesh

Figure 2. Case 2 geometry of the fuel pin layout – fine mesh

Figure 3. Case 3 geometry of the fuel pin layout – sun mesh
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APPENDIX C

Clarification of the AVG, RMS
and MRE Error Measures
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To clarify the three distribution error measures we provide the following brief instructional
example. Consider a problem in which there are ten pin powers to be calculated and an “exact”
reference solution is available. As a hypothetical, consider the three solutions in Tables 1, 2, and 3
meant to represent solutions contributed by three participants.

As can be seen in Table 1, the participant obtained a solution for which most of the pin powers
were calculated correctly (power distribution is the reference solution). The participants lowest pin
power had the greatest amount of error: 0.3%. The RMS error is significantly larger than the AVG
error measure, indicating that there are a few pins that have substantial error (if all of the percent errors
are roughly the same, then the RMS error will equal the AVG error). The MRE error measure is much
smaller than the AVG error measure since a majority of the error resides in the low pin powers.

In Table 2 the participant’s largest error is now on the maximum pin power while the smallest
error is on the lowest pin power. As can be seen, the AVG and RMS error do not change from Table 1
to Table 2, but the MRE error changes almost by a factor of two. In terms of the accuracy, this
participant’s solution has significantly more error in the pin power distribution, which can only be
captured by the MRE error measure.

In Table 3, the participant exactly calculates several of the fuel pins, but four fuel pins have much
significantly larger amounts of error compared to Table 1 and Table 2. Overall, the magnitude of the
error has not changed as indicated by both the AVG and MRE error measures. The distribution of
those errors has changed quite significantly though, which is only captured by the RMS error measure.

In conclusion, the AVG error provides a point of reference for the RMS and MRE error measures.
The RMS error measure gives an estimate of the severity of the percent error distribution and the MRE
error measure gives an estimate of the severity of the magnitude of error on the pin power distribution.
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Table 1. Hypothetical result #1

Reference power User per cent error
1.82 0.01
1.64 0.02
1.45 0.03
1.27 0.04
1.09 0.05
0.91 0.06
0.73 0.07
0.55 0.08
0.36 0.09
0.18 0.30

AVG: 0.075
RMS: 0.109
MRE: 0.044

Table 2. Hypothetical result #2

Reference power User per cent error
1.82 0.030
1.64 0.02
1.45 0.03
1.27 0.04
1.09 0.05
0.91 0.06
0.73 0.07
0.55 0.08
0.36 0.09
0.18 0.01

AVG: 0.075
RMS: 0.109
MRE: 0.091

Table 3. Hypothetical result #3

Reference power User per cent error
1.82 0.13
1.64 0.00
1.45 0.00
1.27 0.00
1.09 0.00
0.91 0.00
0.73 0.00
0.55 0.12
0.36 0.25
0.18 0.25

AVG: 0.075
RMS: 0.125
MRE: 0.044
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