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FOREWORD

Several NEA Nuclear Science Committee (NSC) activities are concerned with the validation of
computation methods and codes as applied to nuclear technology. One of the challenges has been and
continues to be the refined modelling of the full geometrical complexity of real problems in practical
applications. Two types of method for three-dimensional modelling have emerged: the stochastic
Monte Carlo method and several deterministic methods.

In order to address current issues in this field, a series of 3-D neutron transport benchmarks,
known as “Takeda benchmarks” were organised under the auspices of the NSC (Report NEACRP-L-330,
March 1991), and concerned small, highly heterogeneous reactor cores. The Workshop on Advanced
Monte Carlo Computer Programs for Radiation Transport was then organised in Saclay, France on
27-29 April 1993 (proceedings published in 1995 as ISBN 92-64-14376-9), followed by a seminar
entitled “3-D Deterministic Radiation Transport Computer Programs: Features, Applications and
Perspectives”, which was held in Paris on 2-3 December 1996 (proceedings published in 1997 as
ISBN 92-64-16020-5).

One of the results of the latter seminar was the decision to organise an additional benchmark
study so as to clarify issues of precision regarding the different methods used for flux calculations.
A proposal was made by Professor Keisuke Kobayashi from the University of Kyoto to study a pure
absorber problem with internal void regions, which was then further extended to include cases with
50% scattering. This set of problems is known as the “Kobayashi benchmarks”.

The results of these benchmarks were discussed at a meeting in Madrid, Spain on 1 October 1999,
hosted by the Consejo de Energía Nuclear. The re-analysis of the results presented then are
summarised in this report and compared with the “exact” reference solutions.

The participants have agreed to publish the results of each of the codes used along with separate,
detailed discussion papers in a special issue of Progress in Nuclear Energy in 2001.

Further needs for validating methods have been identified and a new benchmark was recently
launched recently by the NSC. It concerns a pin-by-pin power distribution within core assemblies
using transport theory in seven energy groups. This is particularly relevant when validating the
computation of anisotropy effects in highly heterogeneous systems. Professor Elmer Lewis from
Northwestern University and members of Argonne National Laboratory have prepared the specification
for this benchmark. The results will be published in a future report.
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Introduction

In the OECD proceedings on 3-D deterministic radiation transport computer programs edited by
E. Sartori [1], many 3-D deterministic transport programs were presented. It is not simple, however, to
determine their special features or their accuracy. One of the difficulties in multi-dimensional transport
calculations concerns the accuracy of the flux distribution for systems which have void regions in a
highly absorbing medium.

The method most widely used to solve the 3-D transport equation is the discrete ordinates method.
However, this method has the disadvantage of the ray effect and we must be cautious which Sn order
and which quadrature set for the angular discretisation should be used for such systems. On the other
hand, the spherical harmonics method has the advantage of causing no ray effect, but the equations are
very complicated and it is difficult to derive the finite difference or discrete equations which satisfy
the necessary boundary conditions at material interfaces as discussed by Kobayashi [2]. Then, the flux
distribution by the spherical harmonics method shows some anomalies at the material interfaces of
large cross-section differences or at the material void interface. This was seen in the flux distribution
of the 3-D benchmark calculations with void region proposed by Takeda [3], in which appreciable
discrepancies were observed in the flux distribution between programs based on the spherical
harmonics method as shown by Kobayashi [2].

Ackroyd and Riyait [4] investigated flux distributions for 2-D void problems extensively, and
their results show that these void problems are really difficult, suggesting that 3-D transport programs
should also be checked for these problems.

The 3-D benchmark void problems of simple geometries proposed at the OECD/NEA in 1996 by
Kobayashi [5] which were simple extensions of the 2-D void problems given by Ackroyd and Riyait to
3-D geometries. There are two kinds of one-group source problems. One is a system of a pure
absorber with a void region so that the exact solution can be obtained by numerical integration.
The other one has the same geometry as the pure absorber problem, however, the pure absorber is
replaced by a material which has a scattering cross-section of 50% of the total cross-section intended
as the case where ray effects are not too large. Preliminary results were presented at the Madrid
conference by Kobayashi, et al. [6].

Benchmark problems

The systems consist of three regions, source, void and shield regions, whose geometries are
shown in Figures 1-8. An x – z or y – z plane geometry and a sketch of Problem 1 are shown in
Figures 1 and 2, respectively. An x – y or y – z plane geometry and a sketch of Problem 2 are shown in
Figures 3 and 4, respectively. Plane geometries and a sketch of Problem 3 are shown in Figures 5-8,
which is called the dog leg void duct problem. Reflective boundary conditions are used at the boundary
planes x = 0, y = 0 and z = 0, and vacuum boundary conditions at all outer boundaries for all problems.

The cross-sections and source strength S are shown in Table 1. The cross-section in a void region
is assumed to be not zero but 10–4 cm–1 so that 3-D transport programs based on the second order
differential form can be used.

In Problems 1-i, 2-i and 3-i, the systems consist of a pure absorber, and in Problems 1-ii, 2-ii and
3-ii, the systems have a scattering cross-section of 50% of the total cross-section, namely, Σs = 0.5Σt. It is
expected that the total flux distributions at mesh points shown in Tables 2-4 be calculated. These mesh
points are chosen so that the programs which give the fluxes at the mesh centre can be used. The mesh
width, CPU time, the required memory size and the name of the computer used should be given.
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Problem 1

Figure 1. x – z or y – z plane of Problem 1, shield with square void

Figure 2. Sketch of Problem 1, shield with square void
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Problem 2

Figure 3. x – y or y – z plane of Problem 2, shield with void duct

Figure 4. Sketch of Problem 2, shield with void duct
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Problem 3

Figure 5. x – y plane of Problem 3, shield with dog leg void duct

Figure 6. y – z plane of Problem 3, shield with dog leg void duct
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Figure 7. x – z plane of Problem 3, shield with dog leg void duct

Figure 8. Sketch of Problem 3, shield with dog leg void duct

Table 1. One-group cross-sections and source strength S

Problem i Problem ii

Region
S

(n cm–3s–1)
Σt

(cm–1)
Σs

(cm–1)
1 1 0.1 0 0.05
2 0 10–4 0 0.5 × 10–4

3 0 0.1 0 0.05
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Reference solutions

Exact total flux for pure absorber problems

In the case of no scattering, fluxes can be obtained simply by numerical integration; namely, the
neutron total flux at the observation position r in a pure absorber can be calculated by:

( )
( )( ) ( )
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where φ(r), S(r′), Σa and Vs are the total flux, external source, absorption cross-section and source
region, respectively.

We assume that the source S(r) is constant in space and use the relation:
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where θ and ϕ are the polar and azimuthal angles, respectively.

If the observation position r is at the outside of the source region as shown in Figure 9, the total
flux of Eq. (1) can be expressed as:

( )
( ) ( )( ) ( )

( ) ( )

( ) ( )( )( )

φ
π

π

πΣ

r l
l l l

=
− ∫ ′ ′ − ∫ ′ ′

=
− − − ∫ ′

= − − − − −

∫

∫ ∫

∫

1

4

4

4
1

0

2

2
1 1 0 0 1

2

1
1 1 0 0 1

d
dl dl S

l

S
d l dl

l l dl

l
S

d l l l l

l
a l

l
a

V

a a l
l

a

l

l

a
a a a b a

a

a

s

a

a

b

exp

exp exp

exp exp

Σ Σ

Σ Σ Σ

Σ Σ Σ

Ω

Ω

(3)

where the external source is assumed to be in the region whose absorption cross-section is Σa1, l0 and l1

are the total length of the path whose absorption cross-sections are Σa0 and Σa1, respectively, and lb - la

is the path length in the source region. If the observation position r is in the inside of the source region
as shown in Figure 10, the total flux of Eq. (1) becomes:
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where lb is the length of the path from the observation position r to the boundary of the source region.

The total fluxes given by Eqs. (3) and (4) are calculated using the trapezoidal rule in θ and ϕ
variables, where the number of mesh points used for both θ and ϕ variables is 20 000. Convergence
with respect to the number of mesh points is checked by comparing the fluxes with 10 000 mesh
points and confirming that there is no difference between them. The fluxes thus obtained are shown in
Tables 2, 3 and 4 for each problem.
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Figure 9. Observation point is outside the source region

Figure 10. Observation point is inside the source region

Table 2. Total flux for Problem 1

Case i (no scattering) Case ii (50% scattering)
Case Co-ordinates Analytical method Monte Carlo method by GMVP

(cm)
(x,y,z)

Total flux
(cm–2s–1)

Total flux
(cm–2s–1)

FSDa

1σ(%)
Total flux
(cm–2s–1)

FSD
1σ(%)

5, 5, 5 5.95659 × 10–0 5.95332 × 10–0 0.308 8.29260 × 10–0 0.021
5, 15, 5 1.37185 × 10–0 1.37116 × 10–0 0.053 1.87028 × 10–0 0.005
5, 25, 5 5.00871 × 10–1 5.00789 × 10–1 0.032 7.13986 × 10–1 0.003
5, 35, 5 2.52429 × 10–1 2.52407 × 10–1 0.027 3.84685 × 10–1 0.004
5, 45, 5 1.50260 × 10–1 1.50251 × 10–1 0.025 2.53984 × 10–1 0.006
5, 55, 5 5.95286 × 10–2 5.95254 × 10–2 0.023 1.37220 × 10–1 0.073
5, 65, 5 1.53283 × 10–2 1.53274 × 10–2 0.022 4.65913 × 10–2 0.117
5, 75, 5 4.17689 × 10–3 4.17666 × 10–3 0.022 1.58766 × 10–2 0.197
5, 85, 5 1.18533 × 10–3 1.18527 × 10–3 0.021 5.47036 × 10–3 0.343

1A

5, 95, 5 3.46846 × 10–4 3.46829 × 10–4 0.021 1.85082 × 10–3 0.619
a Fractional standard deviation
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Table 2. Total flux for Problem 1 (cont.)

Case i (no scattering) Case ii (50% scattering)
Case Co-ordinates Analytical method Monte Carlo method by GMVP

(cm)
(x,y,z)

Total flux
(cm–2s–1)

Total flux
(cm–2s–1)

FSDa

1σ(%)
Total flux
(cm–2s–1)

FSD
1σ(%)

5, 5, 5 5.95659 × 10–0 5.95332 × 10–0 0.308 8.29260 × 10–0 0.021
15, 15, 15 4.70754 × 10–1 4.70489 × 10–1 0.040 6.63233 × 10–1 0.004
25, 25, 25 1.69968 × 10–1 1.69911 × 10–1 0.025 2.68828 × 10–1 0.003
35, 35, 35 8.68334 × 10–2 8.68104 × 10–2 0.021 1.56683 × 10–1 0.005
45, 45, 45 5.25132 × 10–2 5.25011 × 10–2 0.020 1.04405 × 10–1 0.011
55, 55, 55 1.33378 × 10–2 1.33346 × 10–2 0.019 3.02145 × 10–2 0.061
65, 65, 65 1.45867 × 10–3 1.45829 × 10–3 0.019 4.06555 × 10–3 0.074
75, 75, 75 1.75364 × 10–4 1.75316 × 10–4 0.019 5.86124 × 10–4 0.116
85, 85, 85 2.24607 × 10–5 2.24543 × 10–5 0.019 8.66059 × 10–5 0.198

1B

95, 95, 95 3.01032 × 10–6 3.00945 × 10–6 0.019 1.12892 × 10–5 0.383
5, 55, 5 5.95286 × 10–2 5.95254 × 10–2 0.023 1.37220 × 10–1 0.073

15, 55, 5 5.50247 × 10–2 5.50191 × 10–2 0.023 1.27890 × 10–1 0.076
25, 55, 5 4.80754 × 10–2 4.80669 × 10–2 0.022 1.13582 × 10–1 0.080
35, 55, 5 3.96765 × 10–2 3.96686 × 10–2 0.021 9.59578 × 10–2 0.088
45, 55, 5 3.16366 × 10–2 3.16291 × 10–2 0.021 7.82701 × 10–2 0.094
55, 55, 5 2.35303 × 10–2 2.35249 × 10–2 0.020 5.67030 × 10–2 0.111
65, 55, 5 5.83721 × 10–3 5.83626 × 10–3 0.020 1.88631 × 10–2 0.189
75, 55, 5 1.56731 × 10–3 1.56708 × 10–3 0.020 6.46624 × 10–3 0.314
85, 55, 5 4.53113 × 10–4 4.53048 × 10–4 0.020 2.28099 × 10–3 0.529

1C

95, 55, 5 1.37079 × 10–4 1.37060 × 10–4 0.020 7.93924 × 10–4 0.890
a Fractional standard deviation

Table 3. Total flux for Problem 2

Case i (no scattering) Case ii (50% scattering)
Case Co-ordinates Analytical method Monte Carlo method by GMVP

(cm)
(x,y,z)

Total flux
(cm–2s–1)

Total flux
(cm–2s–1)

FSDa

1σ(%)
Total flux
(cm–2s–1)

FSD
1σ(%)

5, 5, 5 5.95659 × 10–0 5.94806 × 10–0 0.287 8.61696 × 10–0 0.063
5, 15, 5 1.37185 × 10–0 1.37199 × 10–0 0.055 2.16123 × 10–0 0.015
5, 25, 5 5.00871 × 10–1 5.00853 × 10–1 0.034 8.93437 × 10–1 0.011
5, 35, 5 2.52429 × 10–1 2.52419 × 10–1 0.029 4.77452 × 10–1 0.012
5, 45, 5 1.50260 × 10–1 1.50256 × 10–1 0.027 2.88719 × 10–1 0.013
5, 55, 5 9.91726 × 10–2 9.91698 × 10–2 0.025 1.88959 × 10–1 0.014
5, 65, 5 7.01791 × 10–2 7.01774 × 10–2 0.024 1.31026 × 10–1 0.016
5, 75, 5 5.22062 × 10–2 5.22050 × 10–2 0.023 9.49890 × 10–2 0.017
5, 85, 5 4.03188 × 10–2 4.03179 × 10–2 0.023 7.12403 × 10–2 0.019

2A

5, 95, 5 3.20574 × 10–2 3.20568 × 10–2 0.022 5.44807 × 10–2 0.019
a Fractional standard deviation
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Table 3. Total flux for Problem 2 (cont.)

Case i (no scattering) Case ii (50% scattering)
Case Co-ordinates Analytical method Monte Carlo method by GMVP

(cm)
(x,y,z)

Total flux
(cm–2s–1)

Total flux
(cm–2s–1)

FSDa

1σ(%)
Total flux
(cm–2s–1)

FSD
1σ(%)

5, 95, 5 3.20574 × 10–2 3.20568 × 10–2 0.022 5.44807 × 10–2 0.019
15, 95, 5 1.70541 × 10–3 1.70547 × 10–3 0.040 6.58233 × 10–3 0.244
25, 95, 5 1.40557 × 10–4 1.40555 × 10–4 0.046 1.28002 × 10–3 0.336
35, 95, 5 3.27058 × 10–5 3.27057 × 10–5 0.044 4.13414 × 10–4 0.363
45, 95, 5 1.08505 × 10–5 1.08505 × 10–5 0.042 1.55548 × 10–4 0.454

2B

55, 95, 5 4.14132 × 10–6 4.14131 × 10–6 0.039 6.02771 × 10–5 0.599
a Fractional standard deviation

Table 4. Total flux for Problem 3

Case i (no scattering) Case ii (50% scattering)
Case Co-ordinates Analytical method Monte Carlo method by GMVP

(cm)
(x,y,z)

Total flux
(cm–2s–1)

Total flux
(cm–2s–1)

FSDa

1σ(%)
Total flux
(cm–2s–1)

FSD
1σ(%)

5, 5, 5 5.95659 × 10–0 5.93798 × 10–0 0.306 8.61578 × 10–0 0.044
5, 15, 5 1.37185 × 10–0 1.37272 × 10–0 0.052 2.16130 × 10–0 0.010
5, 25, 5 5.00871 × 10–1 5.01097 × 10–1 0.032 8.93784 × 10–1 0.008
5, 35, 5 2.52429 × 10–1 2.52517 × 10–1 0.027 4.78052 × 10–1 0.008
5, 45, 5 1.50260 × 10–1 1.50305 × 10–1 0.025 2.89424 × 10–1 0.009
5, 55, 5 9.91726 × 10–2 9.91991 × 10–2 0.024 1.92698 × 10–1 0.010
5, 65, 5 4.22623 × 10–2 4.22728 × 10–2 0.023 1.04982 × 10–1 0.077
5, 75, 5 1.14703 × 10–2 1.14730 × 10–2 0.022 3.37544 × 10–2 0.107
5, 85, 5 3.24662 × 10–3 3.24736 × 10–3 0.021 1.08158 × 10–2 0.163

3A

5, 95, 5 9.48324 × 10–4 9.48534 × 10–4 0.021 3.39632 × 10–3 0.275
5, 55, 5 9.91726 × 10–2 9.91991 × 10–2 0.024 1.92698 × 10–1 0.010

15, 55, 5 2.45041 × 10–2 2.45184 × 10–2 0.035 6.72147 × 10–2 0.019
25, 55, 5 4.54477 × 10–3 4.54737 × 10–3 0.037 2.21799 × 10–2 0.028
35, 55, 5 1.42960 × 10–3 1.43035 × 10–3 0.034 9.90646 × 10–3 0.033
45, 55, 5 2.64846 × 10–4 2.64959 × 10–4 0.032 3.39066 × 10–3 0.195

3B

55, 55, 5 9.14210 × 10–5 9.14525 × 10–5 0.029 1.05629 × 10–3 0.327
5, 95, 35 3.27058 × 10–5 3.27087 × 10–5 0.045 3.44804 × 10–4 0.793
15, 95, 35 2.68415 × 10–5 2.68518 × 10–5 0.047 2.91825 × 10–4 0.659
25, 95, 35 1.70019 × 10–5 1.70104 × 10–5 0.047 2.05793 × 10–4 0.529
35, 95, 35 3.37981 × 10–5 3.38219 × 10–5 0.043 2.62086 × 10–4 0.075
45, 95, 35 6.04893 × 10–6 6.05329 × 10–6 0.042 1.05367 × 10–4 0.402

3C

55, 95, 35 3.36460 × 10–6 3.36587 × 10–6 0.028 4.44962 × 10–5 0.440
a Fractional standard deviation

Suslov, et al. [7] also calculated the fluxes from Eq. (1) using three-dimensional numerical
quadrature, and their fluxes are exactly the same as the present ones for all six digits given in Tables 2,
3 and 4 except small differences at mesh points (45,95,35) and (55,95,35) of Problem 3.
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Monte Carlo results by GMVP

Monte Carlo calculations were also performed using GMVP [8], where a point-detector estimator
was used to tally the total flux at the given calculation points for all cases. In the pure absorber cases,
107 histories were used, and for the 50% scattering cases, 109, 108 and 2 × 108 histories for Problems 1,
2 and 3, respectively. Calculated total fluxes are shown in Tables 2-4. The total fluxes for the pure
absorber cases are in very good agreement with the analytical results, which shows that the GMVP
program is reliable for these kind of problems. Konno [9] also calculated the total flux using
MCNP4B2, and his results agree well with the present results within statistical errors.

Benchmark results

As shown in Table 5, there are eight contributions for the present benchmarks. Six contributions
were obtained by using discrete ordinates method programs. They are: TORT by Azmy, et al. at
ORNL [10], TORT with FNSUNCL3 by Konno at JAERI [9,11], PARTISN by Alcouffe at LANL [12],
PENTRAN by Haghighat and Sjoden at PSU and USAF respectively [13], IDT by Zmijarevic at
CEA [14] and MCCG3D by Suslov, et al. at IPPE, UTK and CEA [7]. The other two contributions
were obtained using the spherical harmonics method, EVENT by Oliveira, et al. at IC [15], and
ARDRA by Brown, et al. at LLNL [16].

Table 5. 3-D transport benchmark results

Name Program Method Problems Mesh width
(cm)

Computer

Azmy, et al. TORT S16 LNa Scattering
cases only

10/9 Cray Y/MP
4 tasks

Konno TORT
TORT with
FNSUNCL3

S16

S16

FCSb

All cases
All cases

2
2

0.25

FUJITSU
AP3000/24

Alcouffe PARTISN S8, FCb All cases 2 SGI
Haghighat, et al. PENTRAN S20, ADSc

S12, ADSc
No scattering

Scattering
Variable (2-10)

1.111
IBM SP2
IBM SP2

Zmijarevic IDT S16, LCd

Extrapolated
All cases (10/9) DEC

Alpha 4100
Suslov, et al. MCCG3D RTe, SCf, DDg All cases 2.5 SP2

Oliveira, et al. EVENT P9, RTe All cases 1.43-2 COMPAQ
AXP 1000

Brown, et al. ARDRA P21 All cases 1.04-2 IBM
ASCI Blue-Pacific

a
 Linear nodal, 

b
 First collision source, 

c
 Adaptive differencing strategy using the DTW and EDW schemes,

d
 Linear characteristic, 

e
 Ray tracing, 

f
 Step characteristic, 

g
 Diamond difference

In the results by Konno, there are two cases, one in which only TORT is used, and the other in
which TORT is used together with the program FNSUNCL3 and for which the first flight collision
source is calculated. In the finite element-spherical harmonics solutions by EVENT, the ray-tracing
method has been used in the void region, and the flux values are quoted only for points within the
domain of the non-void region, since fluxes in the ray-tracing regions were not available with the
current implementation.
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Benchmark results for Problem (i) of no scattering and (ii) of 50% scattering for Problems 1,
2 and 3 are shown in Figures 11-42. Shown in these figures are the scattering cases calculated with
TORT by Azmy, and the no-scattering cases calculated with TORT by Konno. In Figures 12, 14, etc.,
the ratios of the fluxes to the reference values (i.e. the exact values by the analytical method for the
pure absorber cases, and the Monte Carlo values for the scattering cases) are shown in order to make
clear the difference from the reference values.

Discussion and conclusion

The benchmark results shown in Figures 11-42 are fairly close to the reference solutions,
although some preliminary results have discrepancies with regard to the reference solutions. In the
case of the pure absorber, the apparent discrepancies of the discrete ordinates program TORT (JAERI)
from the exact values for problems 1Ci, 2Bi and 3Ci may be due to the ray effect. Namely, even the
S16 method gives appreciable errors due to ray effects.

In the cases with 50% scattering, the total fluxes for the problems, for example, 1Cii, 2Bii and
3Cii are larger by about a factor of 10 than those for pure absorber cases of 1Ci, 2Bi and 3Ci,
respectively. Namely, the number of scattered neutrons is larger by about a factor of 10 than the
neutrons which come directly from the source, and the ray effect becomes smaller even in TORT.
However, discrepancies from the exact values are fairly large for the problem of the dog leg duct,
problems 3Ci and 3Cii. In the discrete ordinates programs TORT, PENTRAN and IDT, the first
collision source was not used. In PENTRAN, the ray effect is remedied by using appropriate angular
and spatial meshes and mesh widths, and PENTRAN’s unique differencing formulations including
adaptive differencing strategy with directional theta-weighted (DTW) and exponential directional
weighted (EDW) schemes and Taylor projection mesh coupling (TPMC) [13].

In other discrete ordinates programs, TORT with FNSUNCL3, PARTISN and MCCG3D, the first
collision source was used to remedy the ray effect, which is seen in figures given by Konno [9] to be
very successful. Namely, the use of the first collision source for the discrete ordinates method
appreciably improved the accuracy for both problems of pure absorber and 50% scattering cases.
In particular, the results of MCCG3D and TORT with FNSUNCL3 are in excellent agreement, within
an error of 1-5% with the reference solution in most cases, and can be considered as an independent
confirmation of the reference solution. It should be noted that, for the pure absorber problems, the first
collision source method should give in principle exact fluxes and this fact does not demonstrate the
accuracy of the discrete ordinate method itself.

An advantage of the spherical harmonics method is that the equations are invariant under rotation
of the co-ordinates and do not depend on the direction of the co-ordinates that should give no ray
effect. In order to overcome the difficulty in deriving the discretised equations of the spherical
harmonics method for void problems, the ray-tracing method was used for the void region in the
spherical harmonics program EVENT, and the flux in non-void region was coupled with the current
in the void region at the void-material interface. Using this method, the accuracy of the current
spherical harmonics method program was improved. In the program ARDRA, the discrete ordinates
equations with a fictitious source were solved in such a way that the equations became equivalent to
those of the spherical harmonics method, which were used to solve two-dimensional spherical
harmonics equations [17,18].

As seen in the figures, the accuracy of the discrete ordinates method with the first collision source
is best for the present benchmark problems. It is expected that the present benchmark problem would
help further improvement of 3-D transport programs based on the spherical harmonics method as well
as the discrete ordinates method.
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Figure 11. Problem 1Ai “No scattering” (x = z = 5 cm)

Figure 12. Relative flux of problem 1Ai (x = z = 5 cm)
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Figure 13. Problem 1Aii “50% scattering” (x = z = 5 cm)

Figure 14. Relative flux of problem 1Aii (x = z = 5 cm)
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Figure 15. Problem 1Bi “No scattering” (x = y = z)

Figure 16. Relative flux of problem 1Bi (x = y = z)
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Figure 17. Problem 1Bii “50% scattering” (x = y = z)

Figure 18. Relative flux of problem 1Bii (x = y = z)
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Figure 19. Problem 1Ci “No scattering” (y = 55 cm, z = 5 cm)

Figure 20. Relative flux of problem 1Ci (y = 55 cm, z = 5 cm)
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Figure 21. Problem 1Cii “50% scattering” (y = 55 cm, z = 5 cm)

Figure 22. Relative flux of problem 1Cii (y = 55 cm, z = 5 cm)
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Figure 23. Problem 2Ai “No scattering” (x = z = 5 cm)

Figure 24. Relative flux of problem 2Ai (x = z = 5 cm)
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Figure 25. Problem 2Aii “50% scattering” (x = z = 5 cm)

Figure 26. Relative flux of problem 2Aii (x = z = 5 cm)
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Figure 27. Problem 2Bi “No scattering” (y = 95 cm, z = 5 cm)

Figure 28. Relative flux of problem 2Bi (y = 95 cm, z = 5 cm)
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Figure 29. Problem 2Bii “50% scattering” (y = 95 cm, z = 5 cm)

Figure 30. Relative flux of problem 2Bii (y = 95 cm, z = 5 cm)
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Figure 31. Problem 3Ai “No scattering” (x = z = 5 cm)

Figure 32. Relative flux of problem 3Ai (x = z = 5 cm)
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Figure 33. Problem 3Aii “50% scattering” (x = z = 5 cm)

Figure 34. Relative flux of problem 3Aii (x = z = 5 cm)
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Figure 35. Problem 3Bi “No scattering” (y = 55 cm, z = 5 cm)

Figure 36. Relative flux of problem 3Bi (y = 55 cm, z = 5 cm)
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Figure 37. Problem 3Bii “50% scattering” (y = 55 cm, z = 5 cm)

Figure 38. Relative flux of problem 3Bii (y = 55 cm, z = 5 cm)
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Figure 39. Problem 3Ci “No scattering” (y = 95 cm, z = 35 cm)

Figure 40. Relative flux of problem 3Ci (y = 95 cm, z = 35 cm)
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Figure 41. Problem 3Cii “50% scattering” (y = 95 cm, z = 35 cm)

Figure 42. Relative flux of problem 3Cii (y = 95 cm, z = 35 cm)
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