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FOREWORD 

The methods used by the International Criticality Safety Benchmark Evaluation Project (ICSBEP) to 
treat uncertainties encountered in experimental data and in the derivation of benchmark models have 
evolved significantly since the project was initiated in 1992.  At an ICSBEP Meeting in Portland, 
Maine (1999), the Working Group expressed the need for a guide to the treatment of uncertainties in 
order to assist the work of both evaluator and reader. 
 
Because of this historic background, when using an evaluation reported in the “International 
Handbook of Evaluated Criticality Safety Benchmark Experiments,” the reader will often encounter, 
especially in evaluations written before 2001,  
 

• mixing of uncertainties in physical parameters that are standard deviations coming from a 
large number of measurements with those given as tolerances, or bounds, 

• lack of information about the sources of given uncertainty values, including level of 
confidence and degrees of freedom corresponding to reported uncertainties, 

• inconsistencies in the coverage factor (corresponding to 1, 2 or 3 σ) between the different 
uncertainties, 

• after the uncertainties in physical parameters are propagated to obtain an equivalent reactivity 
uncertainty of keff, this total experimental uncertainty is given without mentioning the level 
of confidence. 

 
The mean and standard deviation are now recommended as optimal estimates for a parameter and its 
uncertainty.  If these are used for the benchmark model and to calculate the uncertainty in keff, then, 
when the probability distribution of keff is Gaussian (a reasonable assumption in many cases), the 
level of confidence of the keff uncertainty range will be approximately 68%. 

This guide, written to develop a consistency among evaluators in the uncertainty treatment (Sections 
2, 3.1, and 3.5 of the ICSBEP evaluation), is based on two main references, which are the respective 
U.S. and European standards.  The standards are very similar and have the same origin, namely, the 
International Standard Organization (ISO) Guide to the Expression of Uncertainty in Measurement, 
published in 1995.  These two main references are 

o   Reference 1 – “American National Standard for Expressing Uncertainty -  U.S. Guide to the 
Expression of Uncertainty in Measurement,” ANSI/NCSL Z540-2-1997 (Copyright © 1997 
by National Conference of Standards Laboratories, All rights reserved.). and 

o   Reference 2 – “Guide pour l'expression de l’incertitude de mesure.” European Pre-standard 
NF ENV 13005 Août 1999. 
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1.0 GENERAL CONSIDERATIONS IN THE DETERMINATION OF UNCERTAINTIES 
 
 

1.1 Benefits of determining best estimates of uncertainties 
 
Every criticality experiment has numerous associated uncertainties.  How close the assembly was 
to critical, keff=1.0000, is perhaps the most obvious uncertainty for a critical benchmark, but 
usually is among the least significant.  An important uncertainty is in the exact contents of the 
assembly, the masses and compositions of constituents.  Similarly, the geometry (dimensions and 
relative positions such as tank diameter or array pitch) is never known perfectly.  While absolute 
truth, in this case the exact configuration, is unknowable, the attainable goals are an estimate of it 
(the benchmark model) and an estimate of how well the configuration and its neutronic state are 
known. 
 
But why should the evaluator make a substantial effort to identify and quantify all the 
uncertainties?  There is no disputing the principle that estimates of physical quantities (here the 
input quantities that define the benchmark model) are of little use if there is no knowledge of how 
reliable the estimates are.  The real question is, why is it important to carry out a rigorous 
uncertainty analysis?  Why is a rough estimate of the total uncertainty not good enough? 
 
An immediate benefit of a rigorous analysis accrues in qualifying codes and cross sections used 
in criticality assessments.  If the benchmark models used in the validation analysis have realistic 
uncertainties, then the resulting calculation bias and its associated uncertainty will better reflect 
the accuracy of the criticality calculations. 
 
A longer-term benefit is improvement of the state of the art of criticality safety.  Criticality safety 
benchmarks can be used for this purpose only if their total uncertainties are well known.  
Realistic uncertainties from a diverse set of experiments provide the data needed to uncover 
weaknesses in neutron cross section data and calculational methods.  Once these weaknesses have 
been characterized, it should be possible to reduce or eliminate them.  This process holds the 
promise of more accurate criticality safety calculations in the future.  This is important despite the 
fact that a large safety margin usually is added.a  Firm knowledge of the uncertainty provides a 
foundation for setting appropriate safety margins.  As the state of the art improves, smaller safety 
margins can be justified. 
 
Best-estimate parameter values and uncertainties are needed to attain these goals.  The evaluator 
should resist any tendency to either overestimate or underestimate uncertainty.  It is a 
misconception that making large uncertainty estimates is always a conservative approach for 
criticality safety.  If the total uncertainty is unrealistically large, some existing biases may be 
hidden in the uncertainty margins when comparing calculational results and benchmark 
values.  In that case the computer code/nuclear data might be considered as validated in the 
domain of the benchmarks, while actually a bias may exist.  On the other hand, if the total 
uncertainty is unrealistically low, calculation results may appear erratic or indicate a bias 
where none exists.  This may lead, incorrectly, to modifications of cross sections or lack of 

                                                 
a  Safety margins are added for many reasons, not only as a result of qualification. 
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confidence in codes or experiments, when the real deficiency was neglected uncertainty.  
Therefore the uncertainty reported in the benchmark evaluation must be as realistic and accurate 
as possible.  This requires the evaluator to be rigorous, complete, and objective. 
 

1.2 The uncertainty analysis 
 
1.2.1 Evaluation of experimental data 
 
The evaluator typically must perform an uncertainty analysis for the experiment that goes 
beyond that reported by the experimenters.  Experimenters often have not performed as 
thorough an uncertainty analysis as required for the benchmarks.  In the case of decades-old 
measurements, the experimenters did not have calculational tools as powerful as those available 
today with which to estimate uncertainty components.  Effects of small experimental 
uncertainties that may have been recognized as negligible in validation of calculational methods 
available at that time might be larger than current methods’ uncertainties.  That is, the 
experimenters may not have perceived a need for the rigorous uncertainty determination expected 
by today’s code users.  Small effects that may have seemed negligible at the time of the 
experiments are recognized today as worth considering as sources of uncertainty.  Accordingly, 
the evaluator needs to make a critical assessment of the uncertainties described by the 
experimenters and try to remedy any weaknesses. 
 
It is often in the context of filling gaps in the experimenter’s uncertainty analysis that the most 
difficult challenges arise for the evaluator.  In this situation there is usually a lack of information 
in the reported experimental data.  For example, no uncertainty is reported, or an uncertainty is 
reported without indicating its level of confidence, its source, or how it was measured.  Faced 
with a lack of information the evaluator might be inclined to assign a large uncertainty, e.g. by 
assuming arbitrarily that the “questionable” uncertainty corresponds to one standard deviation 
(1σ).  As discussed above, this inclination should be resisted.  Instead, the evaluator should base 
the uncertainty estimate on an understanding of the physical phenomena causing the parameter to 
vary about its nominal value.  If the phenomena involved are not within the scope of the 
evaluator’s expertise, it is prudent to consult experts and/or the pertinent literature.  Methods and 
habits at the time of the experiment may also be considered. 
 
1.2.2  Additional uncertainty from creating the benchmark model 
 
Even if the experimenters provide a thorough uncertainty analysis for the experimental 
configuration, the evaluator must extend it to the benchmark model.  It is always necessary to 
transform, or simplify, the as-built experimental configuration into a practical benchmark model.  
At a minimum, the extent to which the surrounding environment is included in the model must be 
limited.  Typically, additional simplifications are made.  Each simplification introduces a bias in 
keff compared to the experiment, with an associated uncertainty.  When calculations are used to 
determine the bias, as is usually the case, the evaluator should consider cross section data and the 
limitations of calculation methods as potential contributors to the uncertainty in the bias, as well 
as limitations of his knowledge of the details that are modeled and then omitted or simplified.  
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The transformation-related biases and uncertainties must be combined with the keff and Δkeff, 
respectively, of the as-built experiment to obtain the benchmark-model keff a and uncertainty. 
 
The evaluator should strive for a reasonable balance between making the benchmark model 
amenable to calculation and keeping the total keff uncertainty of the model as small as 
practical.  Obviously, simplifications that make the benchmark model easier to use tend to make 
it more attractive to criticality safety analysts.  However, each simplification introduces an 
additional uncertainty contribution.  The use of benchmark models to validate a criticality safety 
analysis or to identify weaknesses in cross section data and calculational methods is more 
effective if the uncertainties are small.  The only stage in the evaluation process where the 
evaluator legitimately can influence the magnitude of the total uncertainty is in deciding what 
simplifications to make to create the benchmark model. 
 
1.2.3 An objective, rigorous, graded approach 
 
Since performing a rigorous uncertainty analysis requires a lot of work, there is motivation to 
perform the task efficiently.  The most efficient strategy for the uncertainty analysis is a graded 
approach, in which the effort expended in quantifying an uncertainty component is roughly 
proportional to the contribution of the component to the total uncertainty.  Little effort is 
warranted if a simple estimate shows that the uncertainty in the parameter makes a small 
contribution to the total uncertainty in keff.  Conversely, a large contributor warrants 
careful consideration.  If a potentially large contributor is one for which there is a lack of readily 
available information (a “questionable” uncertainty), then it must be further investigated through, 
for example, extra measurements or analysis, checking in logbooks and other reference 
documents, or interviews. 
 
To put into perspective what constitutes a small contributor, consider that a single component that 
is 10% as large as the total uncertainty makes a ½% contribution to the total when the 
components are added in quadrature (i.e., square root of sum of squares of components).b Thus, a 
small number of components of this size or less have little effect on the total.  When the evaluator 
cannot anticipate the relative magnitudes of the various uncertainty components, an iterative 
strategy may be appropriate.  In that approach, simple, scoping estimates would be made for all 
parameters in the first iteration and, in subsequent iterations, the important contributors would be 
estimated more carefully. 
 

                                                 
a  The benchmark-model keff is the best estimate of the value of keff that would be observed for an isolated experiment 
having exactly the geometry and materials described in the benchmark model. Therefore, it is also the result expected 
from a calculation of the benchmark model. 
b For example, an uncertainty of 0.003 added in quadrature to an uncertainty of 0.03 gives ( ) ( )22 003.003.0 + = 
0.03015, which is an increase of only 0.00015/0.03 = 0.005 = 0.5%. 
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1.3 Level of confidence 
 
Although the true value of keff of the configuration described by the benchmark model is not 
known, the evaluator estimates its value, based on all relevant experimental data and knowledge. 
The evaluator’s estimate is called the “benchmark-model keff.” The evaluator also estimates the 
overall uncertainty in order to indicate how keff would vary as values of the parameters vary 
within their uncertainty ranges.  Of course, the value of each parameter in the model is the 
evaluator’s best estimate of its true value.  Similarly, the probability distributions of the 
parameters used to calculate the keff uncertainty are best estimates based on all available data and 
knowledge. 
 
In order for the overall uncertainty in the benchmark-model keff to be useful, it is necessary 
that its approximate level of confidence be stated.  The preferred uncertainty for the 
benchmark-model keff is an estimate of its standard deviation, σ. 
 
As mentioned previously, experiment documentation may give uncertainty without specifying its 
source or how many standard deviations it represents.  As part of the evaluation, the evaluator 
describes whatever is known about the sources of reported uncertainty values so that standard 
uncertainties (estimates of standard deviations) can be determined.  Then the effects of the 
standard uncertainties are calculated and combined to obtain the overall uncertainty of keff of the 
benchmark model. 
 
For a parameter whose probability distribution is normal, or Gaussian, one standard deviation 
(±σ) represents a 68% confidence level;  i.e., the probability that the true value of the parameter 
is within ±σ of its mean value is 68%.  Because keff depends on many physical parameters, the 
assumption of a normal probability distribution for keff of the benchmark-model configuration is 
usually reasonable (§G.2 of Reference 1).  If the uncertainty of keff is not dominated by the 
contribution from any single non-normal parameter distribution, and if keff is approximately linear 
within the uncertainty ranges of the independent parameters, the standard deviation of keff, 
obtained from standard deviations of the independent parameters affecting it, will represent an 
approximate 68% level of confidence. 
 
 

1.4 The guide 
 
While this guide describes the important principles and suggests procedures, it is not a 
“cookbook”.  This point is well stated in §3.4.8 of Reference 1.a 

 
Although this guide provides a framework for assessing uncertainty, it cannot 
substitute for critical thinking, intellectual honesty, and professional skill.  The 
evaluation of uncertainty is neither a routine task nor a purely mathematical one; it 
depends on detailed knowledge of the nature of the measurand and of the 
measurement.  The quality and utility of the uncertainty quoted for the result of a 
measurement therefore ultimately depend on the understanding, critical analysis, and 
integrity of those who contribute to the assignment of its value. 

                                                 
a ANSI/NCSL Z540-2-1997 
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The importance of using sound technical judgment cannot be overemphasized.  It is the primary 
asset in performing the uncertainty analysis. 

 
This guide presents a recommended methodology, more or less already used by the scientific 
community, in a form that each ICSBEP evaluator can implement.  Its purpose is to provide 
guidelines on the treatment of uncertainties in the evaluation of critical experiments by ICSBEP 
participants.  

 
The remaining sections of this document contain more specific guidance.  In particular, see 
Appendix C for several illustrative examples.  

 
• Section 2 – Definitions of key terms and statistical quantities. 
• Section 3 - An inventory of the usual uncertain parameters on which keff depends. 
• Section 4 - Approaches for calculating the Δk effect of the uncertainty in a parameter. 
• Section 5 - Systematic effects and their uncertainties. 
• Section 6 - Method of obtaining the combined keff uncertainty. 
• Section 7 - References.  
• Appendices – A glossary and specific methods. 
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2.0 METROLOGY AND ASSOCIATED STATISTICSa 
 
 

“Experience shows that practically all measured values differ from the true ones, not only 
because of uncontrollable experimental errors and limited counting statistics but also because 
auxiliary quantities employed in the process of data reduction, such as geometric dimensions, 
sample composition, backgrounds, and reference data, are not known with perfect precision.  The 
true values can therefore never be known exactly, and around a reported experimental value there 
is always a certain range of similar, more or less plausible values that could also be true.  Thus all 
inferences, predictions, engineering, or other applications of measured data can at best be based 
on weighted averages over all those possible true values, with weights indicating how plausible 
each value is.  These weights and averages are, of course, what we call probabilities and 
expectation values.  Persons possessing different knowledge about some quantity assign different 
probabilities and adjust them whenever they get new information.  Obviously probabilities 
encode incomplete and uncertain information.  It follows that they cannot be considered as 
measurable physical properties.  They are subjective in the sense that they depend on a person’s 
knowledge, but that does not mean they are arbitrary.  They must obey the rules of logic that 
demand, for instance, that rational persons with the same knowledge assign the same 
probabilities. 

 
“Clearly the full information gained from a typical measurement of some physical quantity x 
consists not in a single numerical value but in a whole probability distribution, i.e., a set of 
discrete probabilities pj if the possible values xj form a discrete set, or of infinitesimal 
probabilities p(x) dx of the true value lying between x and x + dx if they form a continuum with 
probability density function p(x).  Most users of a measured datum are, however, not interested in 
the detailed distribution of possible values.  What they want is one recommended value and error 
bars that indicate the accuracy.  Decision theory tells us that if the distribution is to be 
summarized by just two numbers, it is best to give its mean x  and its variance var x = 

( )2xx − , and to state the experimental result as x  ± Δx, where Δx ≡ xvar  is the standard 

deviation (root-mean-square error).  This “estimate under quadratic loss” minimizes the mean 
square error and thus, for any reasonably smooth loss function, the penalty expected for not using 
the true value. 

 
“Arguing backwards one can interpret data given in the form x  ± Δx as abbreviating a whole 
distribution of possible x values, with explicitly specified mean and standard deviation (or first 
and second moment).  Except for Gaussians this information is not sufficient for reconstruction of 
an unknown original distribution, but the maximum-entropy principle (the modern generalization 
of the principle of insufficient reason) tells us to use a Gaussian with the given specifications for 
all further inference, since any other type of distribution would imply additional information that 
we do not have.  This is a remarkable extension of the domain where Gaussians can be employed, 
far beyond the familiar justification of many small independent errors acting together, and valid 

                                                 
a The four introductory paragraphs to this section were provided by Fritz H. Fröhner, Kernforschungszentrum 
Karlsruhe.  For more detail about terms used in these four paragraphs, see References 5 and 6. 
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also for correlated and common errors.  If only bounds (tolerances) are given, so that all one 
knows is a < x < b, the maximum-entropy distribution is rectangular, with mean x  = (b + a)/2 

and standard deviation Δx = xvar  = (b – a)/(2√3). 
 

“If a measured quantity y is a function of several auxiliary (e.g., data reduction) parameters xj, 
one finds the “sandwich rule” for mean square errors, 

( )∑ ∂
∂

∂
∂≅

k,j k
kj

j x
yx,xcov

x
yyvar , 

if the usual linear approximation of error propagation, δy ≅ Σj(∂y/∂xj)δxj, is used for y - y .  The 

partial derivatives (sensitivities) are, of course, to be taken at the mean values jx , and 

cov(xj, xk) ≡ ( )( )kkjj xxxx −−  is the jk element of the covariance matrix.  In terms of 

standard deviations σj and correlation coefficients ρjk one has cov(xj, xk) = σjρjkσk with ρjj = 1 
and cov(xj, xj) = var xj.  In the simplest case where the unknown error is just a sum of 
uncorrelated component errors, δy = Σj δxj, one has 

∑=
j

jxvaryvar . 

This means the (root-mean-square) component errors have to be added in quadrature, regardless 
of their nature:  Against widely held belief it is perfectly correct to add “statistical” (e.g., 
counting, type A) and “systematic” (e.g., calibration, common) root-mean-square errors in 
quadrature to get the total error.” 
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In this section, the following concepts, widely published in the international scientific literature 
and further discussed in the references, are reviewed:  Type A uncertainty (random, based on a 
finite number of measurements proper for statistical analysis), Type B uncertainty (scientific 
judgment based on all available information, since there is no possibility to carry out 
measurements for statistical analysis), standard uncertainty, and combined standard uncertainty.  
A glossary of other terms extensively used in metrology and in statistics is given in Appendix A. 
 
For the purpose of benchmark-experiment evaluation, the parameters of interest are particular 
values of quantities that define the physical setup (dimensions, material compositions, masses, 
temperature, etc.) at the time of the experiment.  Their uncertainties come from best estimates of 
the probability distributions of the true parameter values.  Best estimates of characteristics of the 
parameter probability distributions (called “posteriors” in References 5 and 6) are obtained from 
combining the available experimental data with whatever prior knowledge exists. 
 
Sections 2.1 and 2.2 deal with the basic uncertainty that arises when measurements are made of 
one parameter, such as the mass of fuel in a particular fuel rod.  The formulas in Section 2.1 
include the assumption that the n measured values are taken from an infinite population; i.e., the 
repeated measurements of the same parameter could, theoretically, be continued indefinitely to 
obtain an infinite population.  There is another Type A uncertainty due to estimating the mean 
parameter value of a finite population by measuring only part of the population.  An example is 
using the average fuel mass of n measured fuel rods to estimate the mean fuel mass of the N fuel 
rods used in an experiment. This additional Type A uncertainty is discussed in Section C.12. 

2.1 Type A evaluation of standard uncertainty (§4.2 of Reference 1;  
      References 5 and 6)a 

 
Type A evaluation (of uncertainty) 
method of evaluation of uncertainty by the statistical analysis of a series of observations. 
 
Type A estimate of variance 
The experimental variance of the observation (n independent repeated measurements), which 
characterizes the variability or dispersion of the observed values (§4.2.2 of Reference 1), is given 
by 

( )∑
=

−
−

=
n

1i

2
i

2 xx
1n

1s   in which x  is the arithmetic mean or average of the n observations. 

It is often used to estimate the variance σ2 of the probability distribution of the parameter x. 
 
However, whenever a Gaussian distribution of the parameter can be assumed, the best estimate of 
the variance under quadratic loss (i.e., minimizing the expected error) is 

                                                 
a [In this section, two different formulas for Type A uncertainty are given, differing by a factor of ( ) ( )3n/1n −− . The 
first, smaller one is included because it is the traditional one and is the one given in Reference 1.  For small n, 
Reference 1 also recommends considering the Student t distribution. (See §4.2.3, note 1.) The second, larger one, which 
is based on the assumption of a Gaussian probability distribution for the parameter whose uncertainty is being 
estimated, effectively includes the correction for small n. Its derivation from the basic product rule of probability theory 
is explained in parts 1.6 and A.3 of Reference 6. The explanation includes reference to the Student t distribution.  Note 
that the difference between the two is negligible for large n. For small n, the second formula is recommended. – editor] 
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( )∑
=

−
−

=σ
n

1i

2
i

2 xx
3n

1 .  (See eqn. 38 of Reference 6.) 

 
experimental standard deviation 
positive square root of the experimental variance 
 
experimental standard deviation of the mean 
positive square root of the experimental variance of the mean.  It is equal to s/√n (§4.2.3 of 
Reference 1) or ( ) ( )3nn1ns −−  , the best estimate under quadratic loss for a Gaussian (eqn. 34 

of Reference 6).  It estimates the uncertainty of a measurement result x  = the sample mean, 
which is the expectation of the parameter x, based on the n observations. 
 
least-squares fitting 
If a quantity is obtained by least-squares fitting, its empirical standard deviation is also 
considered as a Type A estimate of uncertainty (§4.2.5, §G3.3, and §H.3.2 of Reference 1). 
 
Type A standard uncertainty 
This is the uncertainty of parameter x, which has been repeatedly measured (n observations), 

whose true value is unknown but which is estimated by  x  = ∑
=

n

1i
ix

n
1 .  The Type A standard 

uncertainty u of the value of parameter x is an estimate of σ( x ), the square root of the variance of 
x .  It is  

u  =  
  

1
n n −1( ) xi − x( )2

i=1

n

∑   (see §4.2.3 of Reference 1), or  

u  =  
  

1
n n − 3( ) xi − x( )2

i=1

n

∑   (best estimate under quadratic loss for an assumed 

normal, or Gaussian, distribution of the parameter; see References 5 and 6). 
 

2.2 Type B evaluation of standard uncertainty (§4.3 of Reference 1) 
 
Type B evaluation (of uncertainty) 
evaluation of uncertainty by a method or consideration other than the statistical analysis of a 
series of observations.  Scientific judgment, based on all the available information on the possible 
variability of the measurand, and other relevant knowledge are used. 
 
Type B standard uncertainty 
The Type B standard uncertainty is a best estimate of the standard deviation of the measurand, 
based on whatever relevant information is available about the probability distribution of the value 
of the measurand. 
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• If the estimate of a measurand is taken from a manufacturer's source (e.g., specification, 
calibration certificate), and its quoted uncertainty is stated to be a particular multiple of a 
standard deviation, the standard deviation is simply the total quoted value divided by the 
particular multiplier.  This multiplier is called the coverage factor (defined in Section 2.4). 

 
• If there is no specific knowledge about the possible values of a variable given as 

x ± Δx, where ± Δx seems to refer to the bounds (upper and lower limits) of the quantity 
(e.g., tolerance), then one may assume that the distribution is equally probable everywhere 
within the interval.  The corresponding standard uncertainty is then Δx/√3.a  If only the 
bounds of the interval are given with no specific information about the values of the 
parameter p within the interval, one may assume that the distribution is uniform within the 
intervalb and the parameter’s expected value is the midpoint of the interval.  Again, the 
standard uncertainty corresponding to the standard deviation equals the half interval divided 
by 3 , or the total interval divided by 12 .  (See §4.3.7 of Reference 1.) 

 
• Sometimes, the tolerances are asymmetric and the parameter value is given as xi (-Δx-,+Δx+) 

or [xi+0, xi+Δx].  Reference 1 (§4.3.8 and §G.5.3) suggests that, in the absence of additional 
information, the standard uncertainty may be estimated as (Δx++Δx-)/(2√3), without using the 
mid point of the interval as the best value of the parameter, if this uncertainty is not a large 
contributor to the total uncertainty.  An alternate method is the following:  If a best value xi is 
given within the interval [a, b], one can assume that xi is the estimate under quadratic loss, 
i.e., the average x .  The maximum-entropy distribution is then an exponential distribution 
between a and b with this average, and the standard deviation is well approximated by 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−≅Δ

2
mid

h
xx

1
3

hx ,           1
h
xx

1 mid +<
−

<−  

where xmid ≡ (b + a)/2 is the midpoint and h ≡ (b - a)/2 is the half width of the interval.  Note 
that if the recommended value is the midpoint, x  = xmid, the maximum-entropy distribution 
becomes uniform, with the correct standard deviation h/√3.  If the recommended value tends 
toward one of the bounds, the exponential distribution becomes a sharp spike and the 
standard deviation goes to zero. 
 

• If the probability distribution of a quantity is known empirically or theoretically or in a 
combined way, the standard uncertainty is estimated on the basis of this distribution.c 

 
• If the uncertainty is not given, then judgment may be used to assign an uncertainty based on 

typical values (e.g., reported, measured uncertainties on the same parameter, perhaps from 
                                                 

a  See Appendix G for the derivation of this standard uncertainty. 
b The compelling rationale for this assumption is the principle of insufficient reason (James Bernoulli, 1713) or its 
modern generalization, the principle of maximum entropy (Jaynes, 1957). (personal communication, F. Fröhner, July, 
2002) 
c If p(x) is the probability distribution of parameter x and μ is the mean value of x, then the standard uncertainty 

(standard deviation) is σ = ∫ μ−
xall

2 dx)x(p)x( .  (See Appendix G.) 
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the same laboratory, at approximately the same time period as the experiments being 
evaluated), reasoning based on a knowledge of the manufacturing process, etc. 

 
• In some cases, when the uncertainty on a physical parameter is not stated, the evaluator may 

judge that the number of significant digits used to report the parameter reflects its 
uncertainty.  If so, one of two interpretations may be appropriate.  For instance, consider a 
thickness reported as 0.3175 cm.  (i) If precision is represented by the final digit (10-4 cm), 
assume the standard uncertainty to be half of the final digit, i.e., 0.5×10-4 cm.  (ii) If precision 
is represented by the final two digits (i.e., the next to the last digit is known and the last digit 
is a best estimate), assume the standard uncertainty to be half of the last digit that is known, 
i.e., 0.5×10-3 cm. 

 
However, it is important to note that precision (number of digits) may not represent 
uncertainty of the reported value.  Instead, more decimal places may be reported in order to 
avoid introducing additional, small, rounding error that can affect the result of subsequent 
calculations that use the value.  Perhaps extra digits are a result of conversion of units, as with 
the present example:  0.3175 cm ≡ 1/8-inch.  In this case, number of significant digits should 
not be used to estimate uncertainty, as this would cause underestimation of the uncertainty by 
orders of magnitude. 
 

• The Type B standard uncertainty may be also modified by "evaluator judgment", but this 
should be justified and documented in the evaluation.  Extreme caution is recommended in 
this particular process. 

2.3 “Uncertainty of the uncertainty” 
 

Both Type A and Type B uncertainties can be reliable estimates, but some estimates are more 
reliable than others.  For example, a Type A uncertainty based on only a few measurements is 
less reliable than one based on many measurements.  A Type B uncertainty given in a 
reference simply as ±Δx is less reliable than one given as a “standard deviation that estimates 
the random error” or “bounding.”   
 
The reliability of an uncertainty estimate can be quantified by the “uncertainty of the 
uncertainty” (the standard deviation of the uncertainty) or with an estimated number of 
degrees of freedom.  (See §E.4.3 and §G.4.2 of Reference 1.)  In general, the larger the 
number of degrees of freedom (defined in Section A.2), the more reliable is the uncertainty 
estimate. 
 
Type A standard uncertainties are not necessarily superior to Type B uncertainties.  For 
example, the relative standard deviation of the standard deviation for n observations of a 
normally distributed random variable is approximately [2(n-1)]-1/2.  This formula shows that 
the standard deviation of a statistically estimated standard deviation is not negligible for many 
practical values of n; e.g., for n=10 observations it is approximately 24 percent. 
 
Sometimes Type B uncertainties that are tolerances are assigned ∞ for the number of degrees 
of freedom.  This may reflect the fact that the possibility of the parameter value being outside 
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the permissible range is extremely small (§G.4.3 of Reference 1).  If, on the other hand, there 
is some basis for a subjective estimate of the reliability of a Type B uncertainty, the estimate 
may be used to assign the number of degrees of freedom.  This method is discussed in Section 
6.4. 

 

2.4 Determining combined standard uncertainty 

standard uncertainty, ux 

uncertainty of the result of a measurement of parameter x expressed as one standard deviation. 
(The number of degrees of freedom may also be specified.  Its value may be used in some cases 
to determine the level of confidence of the combined uncertainty.a) 
 
combined standard uncertainty, uc(z)  (§5 of Reference 1) 
standard uncertainty of the result of a measurement of z derived from the standard uncertainties 
of the several quantities, or parameters, upon which the measurand (the measured quantity) 
depends.  It is equal to the positive square root of a sum of sample variances and sample 
covariances of the basic quantities, weighted according to how the measurement result varies 
with changes in these quantities.  (Here sample covariances and sample variances are used as 
estimates of the true, but unknown, ones.) The weighting factors are often called “sensitivities.” 
 
For example, the combined standard uncertainty uc(z), where z is the estimate of the measurand 
Z(X, Y)b, and thus the result of the measurement, is obtained by combining the standard 
uncertainties of the input estimates x and y.  It is given by the formula for the combined variance 

( ) yxy,x
2
y
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2
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The degree of correlation between x and y is characterized by the estimated correlation 
coefficient r defined by )uu/()y,xcov(r yx= , with -1 < r < +1.  If x and y are perfectly 
correlated, the correlation coefficient r is either +1 or -1.  If x and y are uncorrelated, rx,y is zero 
and the last term is equal to 0.  For n independent pairs of simultaneous observations xi and yi, the 

covariance is 
  
cov(x, y) = 1

n −1
xi − x( )yi − y( )

i=1

n

∑ , 

where x  and y  are the mean values.  Furthermore, ( ) ( )( )∑
=

−−
−

=
n

1i
ii yyxx

1nn
1)y,xcov( .  (See 

§5.2.3 and §C.3.4 of Reference 1.)c   
 
The formula for uc

2(z) is an application of the general formula (13) of Reference 1 (sometimes 
called the “law of propagation of uncertainty”) developed for N input-quantity estimates.  The 
general formula is 

                                                 
a  See Section 6.4. 
b Z is assumed to be a linear function of X and Y, which is often a good approximation for small changes in X and Y. 
c Examples of parameters whose uncertainties may be correlated are fissile material density and critical mass. (See 
Section C.3 in Appendix C.) 
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In the case of finding the combined standard uncertainty of keff, the measurand z is keff, the ui’s 
are the standard uncertainties of the physical parameters, and the first derivatives ∂z/∂xi are the 
calculated (or measured) sensitivities of keff to changes of the parameters. 
 
level of confidence  
an estimate of the probability, often expressed as a percent, that the true value of the measurand is 
within a particular interval, such as within ±u of the expected value of the measurand 
 
coverage factor 
numerical factor used as a multiplier of a standard uncertainty in order to obtain an uncertainty 
with a different level of confidence.  For a normal distribution, the coverage factor is typically 
equal to 1, 1.96, 2, or 3, with a level of confidence of, respectively, 68.27%, 95%, 95.45%, or 
99.73%. 
 
For a function that can be approximated by a linear functiona of many parameters, the coverage 
factor for a particular level of confidence may be estimated by the Student-t tables (Table G.2 of 
Reference 1), using the effective number of degrees of freedom of the function.  Use of this table 
assumes that the combined standard uncertainty has been obtained from standard uncertainties 
(Type A or B estimated standard deviations) of the parameters.  This method and the Welch-
Satterthwaite formula for calculating the effective number of degrees of freedom (νeff) are 
summarized in Appendix G of Reference 1.  (See Section 6.0 for further discussion.) 

                                                 
a §5.1.5 of Reference 1 says that a first-order approximation “is usually an adequate approximation…for the purposes 
of an analysis of uncertainty.”  See Section 4.0 for discussion of possible non-linearity of keff. 
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3.0 INVENTORY OF UNCERTAINTIES 
 

Table 1 is a checklist that is useful for making an inventory of all uncertainties. 
 

Uncertainties in data listed in the last column of Table 1 contribute only second-order effects in 
many cases.  This is because their values are the same in both the base case and the perturbed 
case when used in the calculations of Δkeff for experimental parameter uncertainties.  However, 
they are given so that the effect of their uncertainties on keff may be considered and evaluated for 
particular experiments where the effects are possibly significant as first-order effects (for 
instance, 10B/11B in natural boron).  
 
Note that the only possible effects of nuclear cross section data on determining the benchmark 
model are model-simplification decisions based on calculations, calculated keff effects of 
parameter uncertainties, and the magnitude of any calculated corrections to the benchmark-model 
keff due to simplifications.  Because their values are the same in both the base case and the 
perturbed case, the effect of nuclear cross sections is, in most cases, small.  (The evaluator should 
be alert to possible exceptions.)  The closeness of the calculated keff value of the experimental 
configuration to 1.00 is not used to decide the acceptability of a benchmark experiment.  Rather, 
nuclear cross sections are included in the calculational method to be validated with the 
benchmark model. 
 
Preferably, uncertainties of physical parameters have been given by the experimentalist in the 
reported experimental data, along with the basis for their values.  The effect of these uncertainties 
on the total uncertainty for keff must be ascertained.  The evaluator considers the nearby 
environment (for room return effect), the structure containing the experimental device, the fissile 
solution or the array of fissile rods, neutron absorber materials, etc. 
 
For every volume in the represented configuration, parameters that describe material 
concentrations and geometry are listed.  Then, for each parameter, the evaluator considers if the 
corresponding uncertainty is of Type A or B. 
 
It is recommended that the description of an uncertainty of Type A include the following 
information:  parameter’s mean measured value, reported uncertainty (including coverage factor), 
number of measurements, and the deduced standard deviation (standard uncertainty).  In many 
cases, the experimentalist will have given, in his report or logbook, exhaustive information such 
as number of measurements and results, as well as corrections for the finite number of 
measurements.  The evaluator should clearly explain any use of this unpublished data for his 
evaluation of parameters or uncertainties. 
 
One uncertainty of Type A comes from sampling without replacement from a finite population. 
(See Section C.12 in Appendix C.)  For example, suppose fuel-rod diameter is measured for only 
n rods from a total population of N rods, and the average is used to represent the mean diameter 
of the N fuel rods.  In this case, the uncertainty of the mean value, which is 1/√n times the 
standard deviation of the n measured values in the case of an infinite population, is multiplied by 
the factor 1-f, where f = n/N, the fraction of the population that was measured.  Note that if the 
mean value is the measured average of the entire population of N rods used in the experiment 



Guide to the Expression of Uncertainties for the Evaluation of Critical Experiments 
 
 

 

         Revision:  5 
  Page 15 of 94   Date:  September 30, 2008 

(i.e., n=N), this ‘uncertainty of the mean’ is zero.  However, in addition to the uncertainty of the 
mean, the uncertainty of the measurements themselves must always be included, as discussed in 
the first part of Section C.9. 
 
The description of an uncertainty of Type B includes the following information:  parameter’s 
mean value, reported uncertainty and whatever is known about its source, the deduced standard 
uncertainty (best estimate of standard deviation) and how it is obtained (evaluated by scientific 
judgment based on what particular available information or assumed probability distribution).  
(See §4.3.7 - 4.3.9 of Reference 1 and Section 2.2.) 
 
For a variable (Type A or B) given as x ± Δx, where x + Δx and x - Δx bound the quantity x, the 
corresponding standard deviation is Δx/3, Δx/√3, etc., according to whether the variable 
distribution is normal, equally probable everywhere within the interval, or is believed to follow 
some other distribution.  (See Section §4.3.9 of Reference 1.) 
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Table 1.  Identification of possible uncertainties to include in the evaluation of a critical experiment 

 
 

Origin  → 
 

Result of a fabrication or of a measurement Result of calculations 
and tables   

Uncertainty Type → Geometry Physics and Chemistry Time Universal 
Experiment ↓     

 
 
 

Experimental 
Device 

 

Environment:  walls, 
tanks, pedestal, grids, 
support plates, detectors, 
etc . 
 
Measurement systems for 
the critical approach 
 

Fissile Material 
(FM) 

Fissile material 
 

FM cladding 

 
Reflector 

Intentional reflector 
  

Surroundings external to 
experiment 

Moderator  
 
 

Poison 

Internal to core and 
reflector 

 
External 

 
Dimension 
Sphericity 
Planeity 

Curvature 
Deformation 

Distance 
Height 

Spacing 
Gap 

Positioning 
Pitch 

Adjustment 
Centering 

Eccentricity 
 

 
Nature 

Size, shape of particles or 
layers (resonance shielding, 

particle effect) 
Moisture 

Constitution 
 

Density 
Isotopic percentage 

Concentration 
Homogeneity 

Sampling 
Radiolysis 
Hydrolysis 

Acidity 
Valence 
Impurity 

 
Temperature 

 

 
 
 
 

Dates of measurements 
and analyses 

 
Dates  

of experiments  

 
Nuclear data 

Cross sections 
(origin, type, group 

structure, resonance 
approximations) 

Constants 
(e.g. Avogadro’s) 

Water density 
Atomic mass 

Half-life 
Natural isotopics 

 
Truncation, round-off 

Approximation 
Simplification 

Counting statistics 
Adjustment, fitting 

Extrapolation 
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3.1 Uncertainties from physics, chemistry, and isotopics of materials  
The uncertainties from materials include the parameters listed in the following table, which may 
be used by filling in the empty columns, for clarification.  This list is not exhaustive; it was 
prepared for experiments using fissile uranium.  A similar table can be developed for 
configurations with other materials.  
 
The numerical values of the first line are given as an illustration.  The illustration is a Type A 
uncertainty for fuel enrichment. 

 

Parameter 
Identification(a) 

Mean 
measured 

value 

Reported 
uncertainty

in 
parameter 

Type of 
uncertainty

(A or B) 

ν 
Number of 
degrees of 
freedom 

Number of 
standard 

deviations 
associated 
with the 

uncertainty 

Standard 
uncertainty

235U enrichment 
(wt.%) (b) 4.348 0.004 A 4 2 0.002 

Fuel density 
(g/cm3 fuel rod or 
g/cm3 in solution) 

      

Solid absorber 
content (g/cm3) 

      

Poison content 
(g/l) in solution 

      

Absorbing isotope 
concentration in 
natural element  
(eg. 10B in B) 

      

B equivalent to 1/2 
of undetected 
impurities 

      

Acidity [H+] of 
solution 

      

Temperature 
(°C or K) 

      

(a) Parameter units, assumed here to apply to the second, third, and last columns, should be 
clearly specified. 

(b) Depending on how enrichment is measured and reported, this may be at.%. 
 

Although fuel is sometimes thought of as the most important material, composition uncertainties 
for moderators, structures, reflectors, etc. may or may not have a larger impact on keff than do 
uncertainties in the fuel materials.  Consequently, the effects on keff of all significant materials 
must be assessed.  In most cases, these uncertainties will be Type B.  In many instances, their 
small contribution to the overall uncertainty may allow a rather coarse estimate of their value. 

 



Guide to the Expression of Uncertainties for the Evaluation of Critical Experiments 
 
 
 

         Revision:  5 
  Page 18 of 94   Date:  September 30, 2008 

The effect of impurities must also be assessed (see, for example, Section C.6).  The potential 
sources of impurity information, in typical order of decreasing reliability for the material actually 
used in the experiment, are: 

1) measured on the components of the experiments,  
2) measured for material of the same stock from which the components of the experiment 

were made,  
3) provided by the manufacturer as typical of that material,  
4) industry or government specifications for that particular material. 

The first three sources come from chemical or physical analyses, while the last source indicates 
what is required to meet the material standard.   
 
Sometimes impurities might not be reported.  Nevertheless, the possibility of their presence and 
effect should be considered, and if the effect is thought to be important, it should be quantified. 
 
Impurity amounts may be reported in two ways, depending on the possibility to detect them:  
some have a concentration above the detection limit, are detected and well known; others have a 
concentration lower than the ability of the device to measure them; they may be detected or not.  
Therefore, impurity measurement possibilities are the following: 
• Impurity concentration is measured. It is reported with an uncertainty. 
• Impurity concentration is measured.  No uncertainty is reported. 

 If the measurement method is known, an uncertainty typical of the method may be 
assigned. 

 If the measurement method is not known, because impurity measurements typically 
have large uncertainty, a large uncertainty is assigned; 25-100% is suggested, 
depending on the evaluator’s judgment of how accurately the measurement was 
probably done. 

• Impurity is detected and reported as <D, where D is 50% of the minimum amount that can 
with certainty be detected; in this case D ± D may be assigned as the impurity amount. 

• Impurity is reported as <D, where D is the minimum amount that can be detected or 
measured. 

 If D is the minimum amount whose presence can be detected, the evaluator must decide 
whether to check the effect of D, considered as the complete range of the uncertainty, or 
not, depending on 

• his expectation of a significant effect and 
• the likelihood that some was present. 

 If D is the minimum amount whose presence can be measured, the evaluator should try 
to learn  

• if the impurity was detected but could not be measured (in this case, D/2 ± D/2 
may be assigned as the impurity amount), 

• if the impurity was sought but was not detected. 
 
The evaluator may choose to assign a larger uncertainty depending on the source of the impurity 
data.  The uncertainty just described applies when components of the experiment were measured 
(source number 1 in the source list given above).  The more removed the measurement is from 
the experiment, the more uncertainty there may be in the applicability of the measurement to the 
experiment. 
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Impurity amounts obtained from materials standards (source number 4) are interpreted differently 
from those obtained from chemical analyses.  Materials standards give maximum permissible 
amounts of impurities that can adversely affect the properties of the material.  In some instances, 
this is indicated explicitly by specifying “Max.” values.  In other instances, the symbol “<” is 
used, and it is implicit that this is the maximum amount allowed. 
 
The best estimate for a specification “<D” in a standard is closer to D than it is to D/2.  The 
reason is that the manufacturer of the material is unlikely to expend resources to reduce the 
impurity amount much below the allowable maximum.  A reasonable assumption for the 
probability distribution is a right triangular distribution spanning the range of impurity amounts 
from 0 to D.  Implicit here is the assumption that the probability of exceeding the maxiumum 
allowable impurity amount, D, is negligible.  This distribution has a mean impurity amount of 
2D/3 and a standard deviation of D/√18.  Of course, other distributions could be assumed, but it is 
rare for an impurity to have a large enough impact on keff that choosing a different distribution 
would matter significantly. 
 
Impurities are included in the benchmark model, or they are removed with a keff correction 
calculated and uncertainty assigned to the correction.  An example of treatment in a thermal 
spectrum is given in Appendix C.6. 

 

3.2 Uncertainties on geometry 
The uncertainties on geometry include the parameters listed in the following table, in which the 
empty columns may be filled as an aid to clarify the uncertainties.  As noted for the previous 
table, this list is not exhaustive.  It was established for a fuel-rod array in a tank containing either 
water or a solution.  Different parameters will be listed for other types of configurations. 

 
 

Parameter 
Identification 

Mean 
measured 

value 
or design 

value 

Reported 
uncertainty

in 
parameter 

Type of 
uncertainty 

(A or B) 

ν 
Number of 
degrees of 
freedom (a) 

Number of 
standard 

deviations 
associated 
with the 

uncertainty 

Standard 
uncertainty

Fuel Pellet Diameter 
(cm) 

      

Clad Outer Diameter 
(cm) 

      

Absorber Position 
(cm) 

      

Fissile Column Height
(cm) 90. 1. B ∞ √3 1/√3 

Solution Height 
(cm) 

      

Solution-Tank 
Diameter (cm) 

      

(a)  See the discussion in Section 6.4 and in §G.4.2 and §G.4.3 of Reference 1. 
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In the table, an illustration of Type B uncertainty is given for the fissile column height. 
In this example, the fissile column height is given as 90 ± 1 cm, where ± 1 cm is stated as a 
tolerance by the manufacturer.  If there is no more knowledge about this quantity, one may 
assume an equiprobable distribution and that the tolerance bounds the variable, and the standard 
uncertainty will be taken as 1/√3.  If the manufacturing process is "under statistical control,"a  or 
if it may be assumed that the distribution is Gaussian and that the stated tolerance includes >99% 
of the possible values, the standard uncertainty may be taken as 1/3. 

 
In some cases, a Type A standard uncertainty of the mean is obtained from a well-characterized 
measurement (i.e., the measurement is one of many very similar, carefully controlled and 
documented ones of the same random variable).  Then the standard uncertainty may be best 
represented by sp/√n, where sp is the pooled experimental standard deviation characterizing all the 
similar measurements, and n is the number of independent observations used to determine the 
mean of this particular measurement. (See §4.2.4 and §H.3.6 of Reference 1.) 
 
In experiments involving a fissile solution in a cylindrical tank, the diameter is an important 
parameter because its uncertainty can have a large effect.  Its uncertainty is either a result of 
calibration measurements (Type A) or a tolerance (assumed to be Type B, if no other information 
is given). 

 

3.3 Uncertainties of dates 
In the case of experiments carried out with decaying isotopes, all important dates should be 
reported in order to better determine the isotopes’ concentrations when the experiment was 
performed. 
 
Three dates are important: 
1. the date of isotopic analysis, 
2. the date of chemical analysis (giving the plutonium and uranium concentrations), 
3. the date of the experiment. 
 
In the case of fuel rods, isotopic and chemical analyses are usually performed just before fuel-rod 
fabrication.  Then these two dates are the same for all experiments performed with these rods.  
This is not generally the case with fuel solutions. 
 
For experiments with plutonium, dates of separation (when 241Am concentration is set to zero), 
fuel-rod fabrication, experiment, and isotopic analysis are essential to compute the correct 241Pu 
and 241Am concentrations.  Unfortunately, there is sometimes a lack of information for old 
experiments, and an uncertainty on possible dates must be added. 

                                                 
a “Under statistical control” implies that, instead of measuring each individual, one uses sampling theory.  It is assumed 
that measured quantities follow a Gaussian law.  Each sample of measurement gives an estimation of the population 
mean and variance. (See §H.3.6, note 1, of Reference 1.) 
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3.4 Uncertainties from modeling 
The evaluator may simplify the representation of the experiment in the benchmark model in order 
to make the modeling of the configurations easier and the verification process more efficient. 
 
For instance, the evaluator may choose to always use the same temperature, although it may vary 
from one experiment to another in a series.  In this way, the water density is the same in all model 
calculations, although in reality it varies.  The discrepancy between the real temperature and the 
temperature of calculation may be taken into account by calculating the Δkeff sensitivity to a 
temperature change.  Then, if the effect is small, the deviation in temperature of the model from 
experiment may be combined with the uncertainty of the temperature measurement to obtain the 
temperature uncertainty.  If the effect of the temperature difference is significant (but still 
relatively small), the evaluator includes a keff correction for the temperature difference between 
model and experiment, with additional uncertainty (see Section 5.0). 
 
A similar method may be used with plutonium fuel containing 241Am produced by β decay of 
241Pu with a half-life of 14.4 years.  The evaluator may choose for all models of a series of 
experiments to contain the same 241Pu and 241Am percentages.  Then a calculated correction to keff 
may be applied to take into account the gaps between the real values (or likely values, if real 
values or dates are unknown) and model values of  241Pu and 241Am percentages.  If the correction 
is very small, it may be treated as a Type B uncertainty instead of a correction.  If it is larger (but 
still relatively small), it may be treated as a small correction with additional Type B uncertainty.  
If the correction would be significant, the best estimates of the actual percentages should be used 
in the model instead of the correction, with best estimates of their uncertainties included in the 
total uncertainty. 
 
Using this approach on temperature and 241Pu decay time is acceptable when 

• this uncertainty is smaller than the uncertainty of measurement, 
• the effect of this uncertainty is much smaller than the combined effect of other 

uncertainties. 
 
The evaluator, when making model simplifications, and the user, when using a benchmark model, 
should both be aware that any deviation of the model from reality introduces the possibility of a 
bias whose magnitude may not be easily or reliably estimated, and which can never be known 
exactly.  This applies whether the deviation was deliberate, by the evaluator creating the 
benchmark model, or simply due to lack of knowledge about true values. 

 

3.5 General remarks on calculations of uncertainties 
 

When it is relevant, it is recommended to give as much information as possible about the 
calculations of uncertainties, such as (non-exhaustive list) 

• the nuclear cross section library used and its release number (because some nuclear 
data errors may affect calculated corrections and uncertainties), 

• the PN approximation used for cross section development, 
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• the order of quadrature in SN calculations (which might induce truncation errors), 
• nuclear data, such as Avogadro’s number, decay rate, atomic mass, isotopic 

composition,  
• density of water in calculations of effects of its impurities, 
• atmospheric conditions of air (moisture, pressure), when its effect is calculated. 

 
These items correspond more or less to the last column of Table 1.  Note that the evaluator is 
expected to use methods, codes, and data adequate to investigate the reactivity effects of the 
experiment.  Typically, the evaluator uses recent versions of recommended codes and data 
libraries, assuming that errors have been corrected and methods improved in recent versions. 
 
Note that, in general, uncertainties are small quantities relative to the values of their parameters, 
due to the experimentalist’s work to provide a worthwhile experiment by carefully performing 
and documenting it.  Also, uncertainties are generally assumed to be symmetric around the 
nominal values of their parameters, both in sign and in magnitude, but this is not necessarily so. 
Although evaluators are not usually in the position of determining experimental parameter 
uncertainties, if one does have the opportunity to reduce experimental data, the following is 
recommended: 

 
When a quantity and its uncertainty are given in the form x ± Δx, the uncertainty (i.e., Δx) 
should be given with at least two significant digits, while x should have the same number of 
decimal places as Δx.  For example, 6.987±0.035 would be acceptable.  But none of the 
following would be acceptable:  6.99±0.035,  6.987±0.04,  or  6.99±0.04. 
 

This way of specification does not distort significantly the weighted averagesa nor the level of 
confidence based on the uncertainties.  However, the ways described above as unacceptable may 
lead to unexpected alteration of the level of confidence.  (See Appendix F.)  It is important to 
note that this recommendation does not apply to uncertainties that have been provided by the 
experimentalists.  Uncertainties on experimental parameters should be given in the evaluation 
exactly as specified in the experimental references. 
 
As mentioned in Section 1, the evaluator must report an accurate estimate of the combined 
standard uncertainty for keff of the benchmark model of an experiment in order to permit 
meaningful use of the value.  The evaluator must use care to interpret reported uncertainties 
correctly.  For example, it is incorrect to arbitrarily use a Type B uncertainty reported as upper 
and lower limits as equivalent to the standard deviation, thereby neglecting to divide the half-
range value by the appropriate factor of 3, √6, or √3.  Such practice expands unnecessarily the 
overall standard uncertainty for an experiment, thereby reducing its value as a benchmark.  On 
the other hand, if no uncertainty was reported for a particular parameter, this does not mean that 
there is no uncertainty.  In this case, the evaluator should estimate one and consider its effect on 
keff.  If the reactivity effect of a “questionable,” or poorly known, uncertainty is small relative to 
the total keff uncertainty, an in-depth analysis is not needed.  If the reactivity effect of this 
uncertainty is large, a more in-depth analysis is required, because in this case, a coarse 
approximation will alter the quality and usefulness of the experiment and its benchmark model. 

 
                                                 

a  See Reference 6, eqns. 62-67, about combination of data with different accuracies leading to weighted averages. 
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4.0 CALCULATION OF EFFECTS OF UNCERTAINTIES ON keff 
 

The aim of this task of the evaluator, which is documented in Section 2 of the ICSBEP 
evaluation, is to find the effect on keff due to the variation of each single parameter by one of 
several available methods. 
 
Suppose that, 

 the number of uncertain parameters on which keff depends is N, 
 the reference value (best estimate) of the ith parameter is xi, 
 the standard uncertainty (corresponding to 1σ) of the ith parameter is ±ui, and 
 the reactivity effect on keff of changing xi by ui is Δki. 

 
(In this and following sections, the subscript “eff“ will usually be dropped and k should be 
understood to mean keff.) 
 
Almost always, each ui is small enough to have a first-order effect on k.  This means that for 
Δxi ≤ ui, the change in k produced by Δxi is proportional to the magnitude of Δxi.   
 
The evaluator may choose a different parameter perturbation, δxi, to compute the corresponding 
δki.  The δxi is chosen to be large enough to minimize ambiguity arising from roundoff, 
numerical convergence limits or statistical noise, depending on the method used to compute δki.  
At the same time, it is necessary that δxi be kept small enough not to violate the linearity (first-
order-effect) assumption, so that both ui and δxi are proportional to the corresponding changes in 
k by the same factor.  (The evaluator should verify compliance by calculational tests if there is 
doubt.)  Then the desired reactivity effect is Δki = uiδki/δxi.  The proportionality factor δki/δxi is 
the sensitivity of keff to xi. 
 
The rare instance where a ui is not a linear perturbation requires caution and concern.  First, it is 
necessary to determine whether the sensitivity of k to this parameter is too large.  If Δki due to ui 
is not so large as to warrant rejection of the experiment, then it would be prudent to calculate the 
effects of both +ui and -ui perturbations.  If the resulting two values of Δki have comparable or 
small magnitudes, it is acceptable to average the magnitudes and carry the result forward into the 
uncertainty-combining step (see Section 6) as if it were symmetric.  If the two values of Δki are 
large and significantly different, they should probably be treated as asymmetric uncertainty.a  It 
should be noted, however, that the validity of using a simple coverage factor to go from 1σ to 
some other confidence level (see Section 6) is in doubt if a ui is not a linear perturbation. 

 

4.1 One-variable-at-a-time strategy 
 

The easiest way to find the effect of each single parameter on k is to compute each effect 
individually, changing one parameter at a time.  First kref is obtained using the reference values 
for all the parameters.  Then parameter xi is perturbed, with all other parameters at their reference 

                                                 
a  See Section 2.2, Type B standard uncertainty, 3rd bullet. 
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values, and ki corresponding to the perturbation ui is calculated.  The change in k, Δki = ki – kref, 
is the reactivity effect of ui.  A total of N separate perturbed-k calculations yields all the needed 
reactivity effects.   
 
The evaluator should preserve other measured quantities during this process.  If, for example, the 
mass of a constituent part has been measured, the density of that part is altered to preserve the 
mass when a dimension of that part is perturbed.   
 
The differences between the two input files whose keff’s are subtracted to obtain Δki should 
be obvious or made clear in the description of the uncertainty-effect calculation.   
 
It is assumed that input files for sensitivity studies closely represent the benchmark model, but the 
base case for sensitivity studies is not required to be the benchmark model.  The evaluator 
considers whether any difference between the model used for sensitivity studies and the 
benchmark model might significantly affect his calculated result.  If so, he improves his method.  
Any significant difference between models used in sensitivity studies and the benchmark model 
should be mentioned. 
 
The k values can be computed by an analytical method, a deterministic method, or a Monte Carlo 
code. 

4.1.1 Analytical method 
 

For simple configurations, the use of derivatives of neutronic formulas enables the calculation of 
Δk versus a parameter change.  This method, which has commonly been used for critical height, 
was used extensively in the past, before high-performance computers and codes were 
commonplace. 

4.1.2 Deterministic method 
 

The use of a code based on a deterministic method is recommended, when practical.  
Applications where the analytical method can be used are very limited, whereas detailed one- or 
two-dimensional deterministic calculations, and sometimes even three-dimensional deterministic 
calculations, can be run economically on modern computers.  It is usually much more 
computationally efficient to calculate a small perturbation deterministically than by Monte Carlo.  
This is because a very large number of neutron histories is needed in the Monte Carlo 
calculations to make the statistical fluctuations in k small compared to the reactivity effect.  A 
deterministic method may be used when the configuration geometry can be well enough 
represented by the code. 
 
A deterministic method solves numerically an approximation to the Boltzman neutron transport 
equation.  The discrete-ordinates transport approximation, commonly referred to as the SN 
method, is probably the most widely used method.  Alternative approximations include collision 
probability, simplified spherical harmonics, variational nodal transport, and diffusion theory.  The 
approximation selected by the evaluator depends on the computer codes available and on the 
tradeoff between computational effort and accuracy.  For example, diffusion theory requires the 
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least computational effort.  Diffusion theory is accurate enough when computing the reactivity 
effect of a fuel enrichment uncertainty for some experiments, but probably is not accurate enough 
when computing room-return effects.  
 
All the approximations involve iterative solutions.  The iterations are terminated when successive 
iterates agree within convergence criteria.  Depending on how slowly the iterative process 
converges, the actual deviation of the final iterate from a completely converged solution can be as 
much as an order of magnitude larger than the convergence criterion.  Thus, for example, if it is 
desired to know Δki to four decimal places, then the user-specified convergence criterion for k 
should be no larger than 10-5.  The evaluator should also always be aware of the impact of 
approximations in modeling, such as spatial-mesh and energy-mesh effects.  For example, in 
calculating the effect of a dimension change, it is important not to introduce a large 
nonuniformity in the spatial mesh, which could cause a significant change in numerical accuracy.  
If possible, the spatial mesh for the perturbed calculation should be the same as the spatial mesh 
for the reference calculation, with more mesh points in regions where large changes in flux or 
fission source occur. 
 
It is helpful if the evaluator reports key modeling parameters used for the k calculations, such as 
number of energy groups, geometry type, and quadrature order, so that users of the evaluation 
may conclude that the method was sufficiently accurate. 

4.1.3 Monte Carlo method  
 

The Monte Carlo method usually is preferred only when the necessary geometric complexity for 
the model is beyond the capability of deterministic methods.  It can also be a good choice when a 
large, three-dimensional deterministic calculation is not computationally efficient or when the 
energy detail of continuous-energy Monte Carlo is important.  Monte Carlo calculations are run 
with a statistical standard deviation sMC for the mean k as low as reasonably achievable with 
respect to the computation time.  The uncertainty in the value of Δki obtained from two Monte 
Carlo calculations is 2

2MC
2

1MC ss + , or, if both calculations have the same statistical uncertainty, 
√2 × sMC.  Therefore, to obtain a meaningful result for δki = kδxi - kref , it should be much larger 
than √2 × sMC. 
 
To strike a balance with the expense of long-running calculations, the evaluator may be tempted 
to use large changes of a parameter in order to have a significant reactivity effect larger than 
√2 × sMC.  However, an evaluator must be careful in this process.  Sometimes too large a 
parameter change can provide a poor estimate of a small effect, for example in a domain where 
the variation of k versus this parameter is not linear. 

4.1.4 Monte Carlo perturbation method 
 
Statistical uncertainty associated with probabilistic calculations can hide the change between 
results of two very similar configurations.  New algorithms introduced in Monte Carlo codes have 
been developed that can calculate small changes in k.  These algorithms seem to be especially 
well suited for calculating effects of changes in solutions or material compositions. 
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4.1.5 Uncertainties of the calculated uncertainties 
 
As discussed in Section 4.1.3, when using Monte Carlo codes to calculate the keff of the reference 
configuration and the keff of the parameter variation, the statistical uncertainty of the calculation 
by the Monte Carlo code (sMC) must be considered.  For the case with no correlations among 
parameter uncertainties, the variance of the keff uncertainty caused by the parameter uncertainty is 

Δki( )2 = ui
2

δxi
2 kδxi − kref( )2 ± sMC,δxi

2 +sMC,ref
2( )[ ]

   (4.1) 
 

where (kδxi - kref) represents the change in keff induced by change δxi on parameter xi, ui is the 
standard uncertainty of parameter xi, sMC,δxi and sMC,ref are the statistical standard deviations of the 
two calculations of keff.   
 
Note that sMC,δxi and sMC,ref are scaled by the factor ui/δxi and that they are preceded by ±, 
indicating that they are uncertainties.  Typically, sMC is nominally the same for both Monte Carlo 
calculations, and in such cases, the notation can be simplified to become 
 

Δki( )2 = ui
2

δxi
2 kδxi − kref( )2 ± 2sMC

2[ ] 
 
 From this equation, the contribution to the standard uncertainty of keff from the standard 
uncertainty of parameter i is 

    
Δki = ui

δxi

kδxi − kref( )
    (4.2) 

and the “uncertainty of the uncertainty” is equal to MC
i

i s2
x
u
δ

. 

 
Whenever practical, the uncertainty of the uncertainty should be made small (negligible is the 
ideal) compared to the uncertainty.  The most economical way to achieve this is to make δxi 
relatively large.  This approach is limited by the requirement that δxi be kept small enough that 
the assumption of linear dependence of keff on parameter xi is valid. 
 
The other way to achieve this is to calculate a relatively large number of neutron histories.  Due 
to ever increasing computer speed and decreasing computer cost, it has become practical to make 
sMC ≤ 0.0002 in most cases.  In such cases, the uncertainty in the uncertainty is <0.0003, and it is 
likely that the δxi yielding δki values at least twice that large are within the linear range. 
 
It could be the case that resource constraints require sMC to be much larger than 0.0002 and 
nonlinear behavior prevents δki from being made large compared to sMC√2.  Under these 
conditions, a deterministic calculational method would seem preferable to the Monte Carlo 
method.  Alternatively, it might be reasonable to use sMC√2 as an estimate of δki, especially if the 
resulting Δki is small compared to some other Δkj.  If this alternative is adopted, it should be 
made clear in the presentation that the uncertainty is obtained in this way and is therefore not 
representative of the sensitivity of the configuration to parameter i. 
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Factors other than Monte Carlo statistics contribute to the uncertainty of the uncertainty.  
Multigroup Monte Carlo calculations have uncertainty due to cross section processing 
approximations, as do deterministic keff calculations.  Deterministic methods can suffer from 
incomplete convergence or inadequate refinement of space and angle meshes.  As an example, 
the potential for slow convergence makes it prudent to set the convergence criterion for keff an 
order of magnitude smaller than the precision that is being counted on when forming δki.   
 
Approximate modeling of the experimental geometry and compositions add uncertainty.  If the 
analysis is approached with these pitfalls in mind, often these errors can be minimized.  Also, 
there is often much error cancellation because the difference between two highly correlated keff 
calculations is the quantity of interest. 
 
While factors contributing to uncertainty of the uncertainty give cause for careful analysis, 
concern with these issues should be tempered by the graded approach advocated in Section 1.2.3.  
Parameters that make relatively small contributions to uc(keff) warrant a relatively small portion of 
the total resources expended on uncertainty analysis.  Conversely, the major contributors deserve 
the most attention. 
 

4.2 Experimental-design methodology 
 

The aim of uncertainty or sensitivity calculations is always to find the reactivity effect of each 
single parameter on k, i.e., for each parameter xi the difference  Δki = (kδxi - kref)ui/δxi. 
Experimental design methodology can be used to determine the effect on k of a number of 
selected input parameters varying together in the k calculation, according to a specified protocol.  
(See Chapter 15 of Reference 3, and Reference 4.)  A least-squares estimation yields a fitted 
equation: 

 
Δk = a0 + a1X1 + …..+ anXn   in which 

• a1X1,…,anXn represent the variations of Δkeff corresponding to changes of "coded" 
variables X1,…,Xn, 

• a0 is a constant term, which gives a proof of the model linearity, when it is not 
significantly different from 0, 

• a "coded" variable Xi is defined by: Xi = (xi-xref) / (xmax-xref). 
 

The advantage of having the parameters varying in several simulations is to obtain several 
simulations for every single parameter and therefore to reduce the variance of each parameter 
coefficient ai (see §C.3.2 of Reference 1 and Chapter 4 of Reference 4).  For instance, performing 
4 simulations (equivalent to measurements) of a variable instead of 1 will divide the variance of 
the mean by 4. 
 
Since several parameters vary at the same time in simulations, experimental design methodology 
is well suited to derive correlations between parameters, if any. 
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As in the former section, k is computed either by a discrete-ordinates method or a Monte Carlo 
method.  When using the experimental design methodology, care should be taken if Monte Carlo 
is used to calculate the parameter sensitivity.  As mentioned earlier, the size of the variations 
should be selected to be large enough to be statistically significant but not so large as to challenge 
the assumption of linearity.  The Monte Carlo perturbation method is an alternative method that 
may also be applied to small variations of concentrations in several materials at the same time. 
 
Preparing the input data requires more attention from the user.  The calculations and results can 
be written in a matrix format, convenient to compute the coefficients of the least-squares fit of the 
first-order development of keff, by a regression analysis.  In this way,  
Δki = ai Xi is determined for each individual parameter.  (See Appendix D.) 
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5.0 ESTIMATIONS OF SYSTEMATIC EFFECTS AND THEIR UNCERTAINTIES 

 

5.1 Systematic error 
Systematic effects that result in systematic errorsa in measured values may come from many 
sources.  Usually the experimentalist has carefully worked to avoid systematic errors in 
measurement, or has included a description of any suspected systematic effect and his best 
estimate of the error and its uncertainty in the experimental report.  If he has high confidence in 
his non-zero estimate of systematic error, he may include it as a correction to reported values.  
However, uncertainty of the value of the correction, whether the correction is zero or non-zero, 
remains.  This uncertainty, the remaining possibility of systematic error, is called “systematic 
uncertainty.” 
 
Whenever a measuring device is used, there is the possibility of systematic error (systematic 
uncertainty). Systematic error can be reduced by frequent calibration of the device with a 
standard, but systematic uncertainty can never be eliminated. Imperfections in the standard and 
slow drift of the device away from its setting at the time of calibration are examples of remaining 
sources of systematic error after calibration. 
 
Systematic error is defined as the difference between the mean of an infinite number of 
measurements of the measurand, under repeatability conditions, and the unknown, true value of 
the measurand (Reference 1, §B.2.22).  Therefore, the systematic error is impossible to know and, 
perhaps more importantly, the magnitude of systematic uncertainty is not indicated by the range 
of results of repeated measurements.   
 
An example of a source of systematic error is an improperly zeroed measuring instrument.  If a 
systematic effect in the measurement of a parameter is discovered and the value of the error can 
be estimated with some confidence, the benchmark model includes the correction to the measured 
parameter.  The correction is equal in magnitude and opposite in sign to the estimate of the error. 

 

5.2 Uncertainty of the estimate of systematic error 
As is true for the best estimates of parameter values, the best estimate of systematic error has an 
uncertainty.  Its standard uncertainty is typically difficult to estimate.  Usually only a rough 
approximation is possible.   In many cases, the best estimate of the systematic error itself is zero, 
but this does not mean that its uncertainty is zero.  Systematic uncertainty should be evaluated 
carefully, as its presence can contribute significantly to the total uncertainty and can even 
invalidate the conclusions of the experiment. 
 
The possibility of remaining, uncorrected systematic errors (i.e., systematic uncertainty) should 
be included in the total uncertainty.  Evaluators are encouraged to always estimate the systematic 
uncertainty, no matter how small. This requires the evaluator to think about what the remaining 
systematic error might be and to search for something (e.g., calibration data; systematic 

                                                 
a  A “systematic error” is also sometimes called “common error.”  It is an error that is common to all measurements of 
the same type. Thus the error is the same, in sign and magnitude, for each measurement. 
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component of the accuracy of the measurement method found in the documentation for the 
measuring equipment; half of the last digit of the specified average value) that can provide a 
reasonable value. (See Section C.11 in Appendix C for a suggested method of estimating the 
magnitude of systematic uncertainty.)   
 
Because a systematic error has the same value for all similar pieces of an assembly, the effect of 
its uncertainty is cumulative and is not divided by the square root of number of pieces.  An 
example of how to include suspected systematic error of mass measurements is included in 
Section C.9 of Appendix C. 
 
Because a systematic uncertainty in a parameter specified for pieces of an assembly has a larger 
effect than a random uncertainty of the same magnitude, it is important that the evaluator clearly 
indicate which uncertainties are systematic and how estimates of their values were obtained. 

 

5.3 Systematic effect of modeling simplifications 
Besides searching for all possible systematic effects in the experiment, the evaluator considers 
systematic effects induced by the modeling simplifications, such as in geometry, chemistry, 
isotopics, or impurities.  To counteract systematic error due to modeling simplifications, the 
evaluator calculates the reactivity (Δk) of a modeling simplification, and includes it as a  
correction to the experimental keff to obtain the benchmark-model keff. 
 
As an example of modeling simplifications that may have a systematic effect, suppose a proposed 
benchmark model does not include surroundings.  This is often the case because details of the 
assembly room are not described in the references, or would be complicated to model if they are 
known.  A calculation with an approximate model of the surroundings may indicate that keff of 
the proposed model should have a small negative correction.  If the main contributor to the room-
return correction is known (e.g. steel support plate, concrete walls, etc.), the evaluator may 
choose to include an approximate model of the object rather than a correction.  An advantage of 
this approach is that such a model may better represent the neutron spectrum of the experiment.  
 
Omitting impurities may be a source of systematic error and may require a correction to the keff 
value of the benchmark model compared to the experimentally determined keff.  However, when 
impurities are well known, the evaluator may prefer to include them in order to better preserve 
the neutron spectrum of the experiment. 
 
Another source of systematic error in modeling is rounding of parameter values.  This is 
discussed in Appendix F. 

 

5.4 Uncertainty from modeling simplifications 
Besides the correction, the evaluator assigns some fraction of the correction as additional 
uncertainty (an approximate standard deviation), due to lack of knowledge of whatever was 
omitted or simplified, the approximate nature of its model, and use of a calculational technique to 
estimate the correction.  The standard uncertainty of the correction is included the same way 
other uncertainties are included:  its reactivity effect on keff is combined with effects of other 
parameter uncertainties to obtain Δktot, the combined uncertainty of keff. 
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5.5 Systematic effect of modeling similar components as equal 
Another way that modeling can create systematic error is by use of a single value (best estimate 
of the mean value) for many similar components, for example fuel rods.  In reality, variations 
among rods are usually random, with compensating effects.  But in the benchmark models, there 
are no random variations.  All rods have the same value of each parameter.  The effect of 
assigning a slightly incorrect value to all rods can be large.a 
 
Related to this possibility of systematic measurement error is the fact that using the mean 
parameter value is not necessarily the best representation of a critical array.  This can be 
understood by considering an example:  Suppose a critical configuration is a stack of nominally 
equal plates whose fuel masses vary about the average.  Suppose that when the experiment is 
built, plates in the center of the array (region of greatest neutronic importance) happen to have 
more fuel than the rest of the array.  If this experiment is modeled with plates that each contain 
the average fuel mass, the expected calculated keff will be less than 1.00.  Such an experiment 
would be better represented by a model whose plates have a fuel mass that is greater than 
average, namely, one equal to the average of fuel masses weighted by the neutronic importance of 
their position in the array.b 
 
This potential problem is mitigated by experimentalists rerunning the experiment several times, 
with different plates in different positions each time, and by using the average value of the critical 
parameter (e.g. spacing, number of plates, moderator height) for the benchmark model.  If the 
average result of repeated experiments defines the critical configuration, benchmark users are 
more confident that using average parameter values in the model of the experiment is appropriate 
and will not introduce systematic error. 
 
The helpful evaluator will be alert to the possibility that small errors in average parameter values 
may lead to large systematic effects for certain types of configurations, and will mention this in 
the evaluation of these configurations. 

                                                 
a  See the Section C.8 of Appendix C for an example of an ICSBEP evaluation where this occurred. 
b  However, large homogeneous configurations of many fuel elements, because the variation of the neutronic 
importance over most of the core is typically very small, are well represented by models using average parameter 
values. 
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6.0 ESTIMATION OF THE FINAL COMBINED STANDARD UNCERTAINTY 
 

6.1 General formula 

In Section 4, expressions were presented for determining, Δki, the effect on keff 
 of ui, the standard 

(1σ) uncertainty in an experimental parameter i.  Here, the effects of all N experimental 
parameters are combined.  The total standard uncertainty in keff, Δktot, is the square root of the 
combined variance, which is the quadratic sum of the Δki effects of the individual standard 
uncertainties (i.e., uncertainties that are estimates of 1σ) in the N experimental parameters and 
any correlations among the uncertainties.  The general formula for the combined variance is 
 

  
Δktot( )2 = ∂keff
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Each individual Δki represents the change in keff that occurs when the particular physical 
parameter xi is changed by an amount equal to ui, the standard uncertainty of that parameter. 
As previously discussed in Section 4, to find Δki, first the reference value kref is calculated.  This 
is k for values of all parameters equal or close to their nominal values in the experiment.  Then k 
is calculated for a variation in parameter xi, with all other parameters held constant.  The 
difference in the two k values, δki, divided by the parameter variation in the calculation, δxi, 

represents 
i

eff
x

k
∂

∂
, the sensitivity of k to the parameter xi. (The sensitivities may, alternatively, be 

experimentally obtained from the appropriate reactivity measurements.)  Multiplying the 
sensitivity by ui, the standard uncertainty of parameter xi, gives the keff uncertainty due to the 

standard uncertainty in that particular parameter:  i
i
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6.2 Application cases 
As discussed in Section 4.1.5, when using Monte Carlo codes to calculate the keff of the reference 
configuration and the keff of the parameter variation, the statistical uncertainty of the calculation 
by the Monte Carlo code (sMC) must be considered.  Three cases may be considered when Monte 
Carlo methods are used to calculate uncertainties: 

 
1. 2

MC
2

refxi s2)kk( >−δ  

2. 2
MC

2
refxi s2)kk( ≈−δ  

3. 2
MC

2
refxi s2)kk( <−δ  

 
For Case 1 it is clear that the equation (6.2) should be applied.  Cases 2 and 3 are more 
problematic.  For Case 2, it is recommended that the evaluator either calculate with more neutron 
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histories, to reduce sMC, or with larger parameter variation.  Then the true effect of the uncertainty 
can be better estimated.   
 
For Case 3, if sMC is reasonably small (0.0002 or less), the uncertainty may be neglected.  If sMC 
is larger, the evaluator may choose to use √2 sMC as an estimate of Δkeff, if time and resources do 
not allow more investigation; but in this case it should be clear that the uncertainty is obtained in 
this way and is therefore not representative of the sensitivity of the configuration to this 
parameter.  If the evaluator has reason to believe that the calculated change in keff is 
unrealistically small, then the recommendation for Case 2 applies:  either additional neutron 
histories may be run (either as a continuation of the original case or as a second case with a 
different random-number seed), or the case may be run with a larger parameter variation.   
 
The evaluator should be aware of the possibility that dropping a large number of separate, 
apparently insignificant uncertainty effects could lead to underestimation of the total uncertainty. 
 
When giving the final combined standard uncertainty, it is recommended to give an assessment of 
the significant parameters and point out those that are not significant. 
 

6.3 Value, small or dominant, of individual uncertainty  
Because keff generally may be approximated by a linear function of its variables within their 
uncertainty ranges, and because keff generally depends on many parameters with small 
uncertainties that contribute comparable amounts to the combined uncertainty, keff will usually 
have an approximately normal distribution.  In other words, the Central Limit Theorem applies 
(see §G.2 and §5.1.5 of Reference 1).  Then, the combined standard uncertainty in keff, obtained 
from the standard uncertainties of its variables, will represent an approximate 68% level of 
confidence. 
 
If, however, the uncertainty in keff is dominated by one or two parameter uncertainties whose 
distributions are not normal, or if the effective number of degrees of freedom (see §G.4.1 of 
Reference 1) of the keff distribution is small (νeff<10), then the keff standard uncertainty will not 
represent a probability of 68%.  In this case, this condition should be described in Section 3.5 of 
the benchmark evaluation. 
 
If a significant fraction of the keff standard uncertainty is from a parameter with a non-normal 
probability distribution, then the level of confidence of ui of that parameter distribution may be 
given,a as an indication of how much the level of confidence of the combined keff uncertainty may 
deviate from 68%.  (See §G.1.4, G.1.5, and G.1.6 of Reference 1.) 
 

6.4 Effective degrees of freedom and level of confidence 
In most cases, the number of degrees of freedom of keff will be sufficiently large, and the shape of 
its distribution will be sufficiently Gaussian, so that its combined standard uncertainty will 
represent a range within which the true benchmark-model keff is estimated to lie with an 

                                                 
a See Appendix G for a demonstration of how to calculate the level of confidence of the standard uncertainty ui from a 
given probability distribution. 
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approximate 68% level of confidence.  Therefore, it is usually not necessary to determine the 
degrees of freedom for keff or for each parameter.  Only if keff or its uncertainty is determined by 
very few parameters and measurements does the number of degrees of freedom become a 
concern.  This can be understood from the following discussion, which is also useful for dealing 
with the unusual case, as well as to provide a rough estimate of the reliability of uncertainty 
values. 
 
The effective number of degrees of freedom νeff of the total, combined uncertainty, Δktot, may be 
estimated from the degrees of freedom of the individual parameters using the Welch-
Satterthwaite formula (§G.4 of Reference 1): 
 

 

νeff =
Δktot( )4

Δki
4

ν ii=1

N

∑
 

 
where Δki is the effect on keff of changing parameter xi by ui.  The value of the effective number 
of degrees of freedom of an uncertainty of a parameter (assuming a Gaussian probability 
distribution) determines the level of confidence of the uncertainty.  The level of confidence is 
often expressed as percent probability that the true value lies within plus-or-minus the uncertainty 
of the estimated value of the parameter.  Alternatively, the number of degrees of freedom 
determines the factor by which the uncertainty may be multiplied to give a particular level of 
confidence. 
 
If the effective number of degrees of freedom of keff is small, the revised level of confidence of 
the combined standard uncertainty of keff may be stated, or the standard uncertainty of keff may be 
multiplied by the coverage factor that gives a 68% level of confidence.  Both revised level of 
confidence and appropriate coverage factor may be found in Table G.2 (Student-t distribution) of 
Reference 1.  The coverage factor for the 68% level of confidence is the value of t in the 68% 
column of Table G.2 in the row corresponding to the effective number of degrees of freedom νeff. 
 
A method of assigning the number of degrees of freedom to a Type B uncertainty is given in 
§G.4.2 of Reference 1.  This is based on the expression relating the degrees of freedom to the 
relative uncertainty of ui:  The relative “uncertainty of the uncertainty” is approximately 0.7/√νi.  
For example, if a Type B uncertainty is thought to be “reliable to about 35%” (interpreted to 
mean that the relative uncertainty of the uncertainty is 0.35), then 0.7/√νi = 0.35, and νi = 
(0.7/0.35)2 = 4.  For Type B uncertainties that are known to be strict tolerances, an estimate for 
the degrees of freedom is ∞ because the probability that the value is outside the tolerance range is 
assumed to be extremely small. 
 
For small νeff it is recommended to state the approximate relative uncertainty of the keff standard 
uncertainty, which is large for small degrees of freedom.  It is estimated by the expression 
0.7/√νeff.  (See §E.4.3 and Table E.1 of Reference 1.) 
 
Note that the coverage factor for a 68% level of confidence for number of degrees of freedom 
between 3 and 10 (Table G.2 of Reference 1) is approximately 1.1.  This means that, for νeff 
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between 3 and 10,  the combined standard uncertainty should be increased by only 10% to give 
an uncertainty that represents a 68% level of confidence.  For νeff ≥ 10, the increase in the 
combined standard uncertainty to give a 68% confidence level is 5% or less.  So the increase in 
the combined standard uncertainty due to a small effective number of degrees of freedom is not 
great.a 
 
In general, because the uncertainties and probability distributions of input parameters and their 
number of degrees of freedom are estimates, it is unrealistic to expect that the level of confidence 
associated with the combined standard uncertainty of keff is well known.  However, following this 
method will generally give a level of confidence that is within a few percent of 68%.  In other 
words, the probability that keff of the configuration described by the benchmark model is within 
the combined standard uncertainty [±Δktot] of the benchmark-model keff value is approximately 
68%. 
 

                                                 
a Consider this extreme example:  Suppose the combined benchmark-model keff uncertainty is 0.005. Suppose that the 
dominant parameter uncertainty contributes 90% (i.e., is 0.0045) and has 2 degrees of freedom, and all other 
uncertainties have degrees of freedom which are very large. According to the Welch-Satterthwaite formula, νeff ≈ 

3

2
0045.0
005.0

4

4

= .  Then, using Table G.2 of Reference 1, the coverage factor is 1.2, so that the combined keff uncertainty 

should be increased by a factor of 1.2.  The revised combined benchmark-model keff uncertainty for a 68% level of 
confidence is then 0.006. 
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APPENDIX A:  GLOSSARY OF METROLOGY AND ASSOCIATED STATISTICS 
 
 
A.1 Metrology 

 
In this section, some definitions are given, so that those words are well known when they are 
used in the main text.  These definitions are taken from Appendices B, C, and D of 
References 1 and 2, except where noted. 
 
metrology 
the science of weights and measures or of measurements 
 
measurement 
set of operations having the object of determining a value of a quantity, or measurand 
 
measurand 
particularly defined quantity subject to measurement 
 
result of a measurement 
value attributed to a measurand, obtained by measurement 
 
accuracy of measurement 
closeness of the agreement between the result of a measurement and true value of the 
measuranda 
 
conventional true value (of a quantity) 
value attributed to a particular quantity and accepted, sometimes by convention 
 
repeatability 
closeness of the agreement between the results of successive measurements of the same 
measurand carried out under the same conditions of measurement 
 
reproducibility 
closeness of the agreement between the results of measurements of the measurand carried out 
under changed conditions of measurement 
 
experimental standard deviation 

( )∑
=

−
−

=
n

1i

2
i qq

1n
1s  

qi being the result of the ith measurement and q  the arithmetic mean of the n considered 
results.  It expresses the closeness of the agreement between a series of n measurements of the 
same measurand and characterizes the dispersion of the results. 

                                                 
a  [Reference 1 calls accuracy a “qualitative concept.”  It might also be called a “quantitative approximation of 
uncertainty” when it is expressed as a value. – editor] 
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uncertainty (of measurement) 
parameter, associated with the result of a measurement, that characterizes the dispersion of the 
values that could reasonably be attributed to the measurand 
 
error (of measurement) 
result of a measurement minus the true value of measurand 
 
relative error 
error of measurement divided by true value of the measurand 
 
random error 
result of a measurement minus the mean that would result from an infinite number of 
measurements of the same measurand carried out under repeatability conditions 
 
systematic error 
mean that would result from an infinite number of measurements of the measurand carried out 
under repeatability conditions minus the true value of the measurand 
(The error of measurement is the sum of systematic error and random error.) 

 
true value 
value of the measurand that would be obtained by a perfect measurementa 
 

A.2 Basic statistical terms 
 
Common statistical concepts such as probability distribution, distribution function, expected 
value, variance, standard deviation, normal distribution, (two-sided) confidence interval, 
confidence level, degrees of freedom, covariance, and Student-t distribution are defined 
extensively in Appendix C of Reference 1, entitled: "Basic statistical terms and concepts" or 
in Appendix C of Reference 2 entitled "Termes et Concepts Statistiques Fondamentaux". 
 
degrees of freedom 
number of terms in a sum minus the number of constraints on the terms of the sum. 
The number ν of degrees of freedom is equal to n-1 for a single quantity estimated by the 
arithmetic mean of n independent observations.  For a Type B uncertainty that bounds all 
possible values of the measurand, ν is taken as infinite (∞). 
 
probability 
degree of plausibility or rational expectation on a numerical scale ranging from 0 
(impossibility) to 1 (certainty), intermediate values indicating intermediate degrees of 
plausibilityb 

                                                 
a Definitions that include the terms “infinite number of measurements” or “true value” are ideal quantities that 
generally cannot be known exactly.  Their values can only be estimated. 
b  Reference 6, p. 4. 
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APPENDIX B:  SUMMARY OF SOME PRINCIPLES FOR UNCERTAINTY EVALUATION 
 
This section presents a summary of some general principles for calculating uncertainties, as may be 
understood from the main text of this guide. 
 
 
1.  It is, of course, basic to know if the parameter uncertainty ui is Type A (statistical type) or Type B 
(non-statistical type), as described in Section 2.  However, once the parameter uncertainty ui is 
determined, the effect on keff is calculated without regard to its type. 
 
2.  The estimated probability distribution can be used to derive an estimate of the standard deviation 
for a Type B uncertainty (see one example in Appendix G). 
 
3.  After a preliminary, cursory evaluation of effects of parameter uncertainties on keff, the evaluator 
may list all parameters and classify them in order to determine their importance relative to the total 
uncertainty.  Except when possible estimation errors are suspected, it is not necessary to make 
detailed evaluations for parameters that contribute a small part of the total.  Instead, the evaluator 
may refer to the smallness of the effects or to his specific knowledge of previous evaluations of 
similar experiments with similar devices, apparatus, or configurations, to explain why he does not 
more fully investigate the small parameter uncertainties. 
 
4.  Uncertainties in keff of the benchmark model have two main sources:  parameter measurements 
and modeling simplifications. 
 
5.  In arrays of fissile units that are nominally the same, parameters may vary slightly from one unit 
to another in the actual experiment.  But in the benchmark model, the fissile units in an array are 
almost always modeled as identical, with all having the mean measured values of the parameters.  
Using the mean value for each parameter is a simplification of the benchmark model.  It is generally 
assumed that the net effect on keff of physical variation among the units in the array is zero, so there 
is no correction to keff from using the mean value in the model.  However the physical variation in the 
experiment compared to lack of physical variation in the model contributes to the uncertainty in keff 
of the benchmark model. 
 
6.  Parameter x may be estimated by an average, x , of n observations of its value.  Its standard 
uncertainty is the experimental standard deviation (square root of the variance) divided by √n.  This 

can be derived by considering the combined uncertainty of the function ∑∑
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n
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Taking the square root of this gives s/√n, the combined standard uncertainty. 
. 
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7.  Error is the difference between measured result and true value of the measurand.  The error is 
unknown.  Uncertainty is an estimate of the possible error, based on the expected (but unknown) 
probability distribution for the parameter.  The standard uncertainty is the best estimate of the 
standard deviation of that probability distribution.  Standard uncertainties are estimated from a series 
of measurements (Type A) or from whatever other data is given (Type B), combined with any 
relevant prior information. 
 
8.  The combined standard uncertainty of a quantity (measurand) that depends on other parameters is 
the best estimate of its standard deviation, obtained from the standard uncertainties of the 
independent parameters and sensitivities of the quantity to variations of the parameters.  If the 
parameters and measurements of the parameters are independent, there are no correlation terms. 
 
9.  The combined standard uncertainty of keff is obtained by combining the reactivity effects of the 
standard uncertainties of the parameters upon which keff depends.  The reactivity effect of each 
parameter standard uncertainty is the change in keff from increasing (or decreasing) the parameter 
value by its standard deviation.  If parameter variations are independent (no correlations between 
them), the keff combined standard uncertainty is the square root of the sum of the squares of the 
effects of the individual standard uncertainties of all parameters. 
 
10.  The probability distribution of the benchmark-model keff (as parameters of the configuration vary 
according to their respective probability distributions) is usually a normal, or Gaussian, distribution.  
This assumption is justified whenever none of the non-normal parameter distributions dominate the 
uncertainty in keff, and whenever keff may be approximated as a linear function of its parameters 
(which is usually true, at least for small variations of the parameters).  Therefore, the standard 
deviation of keff represents an interval with a 68% level of confidence.  This means that the estimated 
probability is 68% that the value of keff of the configuration described by the benchmark model is 
within the standard deviation of the benchmark-model keff. 
 
11.  Use of a measuring device introduces two kinds of measurement uncertainty:  from possible 
random error and from possible systematic error.  Both uncertainties should be included in the 
combined standard uncertainty, but the algorithms for calculating their contributions to the combined 
standard uncertainty are sometimes different. 
 
12.  A Type A uncertainty evaluation usually does not provide systematic uncertainty.  Therefore, by 
itself it may be of little value, since measurements with nothing but random uncertainties are the 
exception rather than the rule in physics. 
 
13.  When using the term “systematic uncertainty,” its definition should be clear.  It might refer to  
1) the (unknown) systematic error, 2) the best estimate of the systematic error included as a 
correction, or 3) the uncertainty in the estimate of the systematic error, whether that estimate is zero 
or is non-zero and included as a correction. In this guide, it is used only in the last sense. The effect 
of systematic uncertainty should be combined with other uncertainties to obtain the total combined 
standard uncertainty of keff.  
 
14.  Often the effect on keff of the uncertainty in the estimate of systematic error can be most easily 
determined by considering δc, a small correction to each observation.  This correction δc represents 
the systematic error.  The value of δc, the estimate of the systematic error, is zero unless there is a 
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basis for a non-zero estimate.  The uncertainty in δc is the uncertainty in the estimate of the 
systematic error, called the “systematic uncertainty.” 
 
15.  For correctly evaluating uncertainties of arrays, all of the following numbers are important:  

N –  the number of fissile units in the array,  
Np – the total population of fissile units, 
Nm – the number of fissile units that have been measured, 
n –  the number of measurements of the parameter per unit. 

 
16.  Generally, physical variation of a measurand is not easily distinguished from random 
uncertainties of the measuring device. 
 
17.  If the mean parameter value is obtained by averaging measurements of each unit in the array, so 
that the number of measurements (n) is the same as number of units in the array (N), the calculation 
of the effect of the standard uncertainty of the parameter for an array is much simpler. 

18.  When calculating 
  

∂keff

∂xi

, the sensitivity of keff to a parameter, it is not necessary to change the 

parameter by its standard uncertainty, ui, in the calculation.  Instead, Δkeff may be calculated by 
changing xi to xi + δxi, as long as δxi and ui are both small enough that the change in keff is linear with 
the change in the parameter.  Then the effect of the standard uncertainty is 
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19.  Because the effect of systematic error does not diminish with number of elements in an assembly 
(like the effect of random uncertainty does), it is important to include estimates of systematic 
uncertainty in the uncertainty analysis. Otherwise the combined keff uncertainty may be 
underestimated.  
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APPENDIX C: EXAMPLES OF UNCERTAINTY EVALUATIONS 
 
This section presents a few examples applying the principles of Appendix B, in particular, examples 
evaluating Δki for arrays of fissile units. 
 
It should be noted that the depth of the discussion of the examples is not meant to imply that all 
uncertainties should be scrutinized to such detail.  In fact, for the example in Section C.1, the 
differences in the results of different analyses are practically insignificant.  (This fact, itself, may be 
instructive.)  Here, the depth of discussion is not related to the particular size of the uncertainty.  As 
mentioned in Appendix B (#3), the larger the uncertainty, the more scrutiny is appropriate. 
 
Also, examples of UO2 rods are emphasized.  This is because effects of uncertainties of array 
parameters are typically more difficult to evaluate than other uncertainties, for some of the reasons 
mentioned in the discussion. 
 
 
C.1  Examples of determining Δki, the effect on keff of the standard uncertainty σi of a 
        parameter xi for a critical array of fuel rods 
 

In a fuel rod array, many parameters are random variables.  If the parameter measurement is of 
statistical type (Type A), the parameter value obtained from the series of n measurements is 
defined by its mean  m, variance <σ2>, and number ν of degrees of freedom (see Section A.2).  
The standard uncertainty of m  is then <σ>/√n, corresponding to the standard deviation of the 
mean (see §4.2 of Reference 1, pp. 65-68 of Reference 3, and References 5 and 6). 
 
The parameters of an array either characterize the fuel rod itself and are due to the way rods were 
manufactured: 

 
• fuel linear density, 
• inner and outer clad diameter, 
• clad thickness, 
• fissile column diameter, 
• fissile column height, 

 
or they characterize the array, such as the pitch.  (Pitch uncertainty is further discussed in 
Section C.2.5.) 
 
A few parameters of fuel rod arrays may be measured separately and are already assumed to 
apply to all rods, such as fuel enrichment, stoichiometry (O/U or O/Pu ratio), fuel-pellet density, 
impurities, and clad density and composition.  (Fuel-enrichment uncertainty is discussed in 
Section C.4.) 
 
Consider an example.  Suppose that the following is known about the fuel mass in fuel rods of a 
critical configuration:  The configuration comprises 100 fuel rods that are nominally the same.  
The mass of fuel in 36 rods is measured by a measuring device that has an accuracy of 0.1 grams.  
Therefore, the measurement consists of 36 values, one observation of each rod.  The 36 
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observations result in a measurement of average mass of fuel (UO2) in a rod.  The result is 
580.00±0.21 g (1σ). 

 
The question to be answered is “What is Δkmass, the effect on keff of umass, the standard uncertainty 
in UO2 mass in the rods of the critical configuration?” 
 
For clarity, it is advisable to first evaluate the standard uncertainty ui in the particular parameter 
xi. (Here, xi is fuel mass per rod.)  Then use ui to find the uncertainty in keff, Δki, due to the 
particular value of the parameter uncertainty.  Also, the evaluator should be careful to distinguish 
between N=100, the number of rods in the configuration, and n=36, the number of measurements 
of the parameter from which the mean parameter value is derived. 
 
There are several acceptable answers, depending on additional data and evaluator judgment. 

 
 
C.1.1 One acceptable answer 

C.1.1.1  Parameter uncertainty 
 

1. The following is known about the measurement: 
a. The value of the fuel mass of 36 of the rods used in the configuration was observed. 
b. The mean value of fuel mass per rod was 580 g. 
c. The standard deviation (s) of the 36 observations was 0.21 g. 
d. The accuracy of the measuring device was 0.1 g. 

2. The evaluator must make the following judgments, based on further investigation of data 
about the measurement and the measuring device and, if necessary, best guesses about the 
meaning of the available data: 

a. Is the ±0.21-g uncertainty the experimental standard deviation, i.e., is it the square 
root of the variance of the measurement (36 observations)?  Or was the variance 
divided by √n=6 to give the standard deviation of the mean mass? 

b. Does the 0.1-g accuracy of the measuring device represent a standard deviation, the 
entire range of possible values, or something else? 

c. What is the shape of the probability distribution curve of measurement uncertainty 
represented by the 0.1-g accuracy of the device? (normal, flat, etc.) 

d. The evaluator has learned that the word “accuracy” has no generally accepted 
definition and that it is often used differently in different contexts.  He wonders, 
“Does the stated accuracy include estimates of possible systematic error as well as 
possible random error?” 

e. If it includes possible systematic error, what is the best estimate of the value of the 
systematic error?  If the best estimate of the systematic error is not zero (for example, 
if an estimate, including direction, of the expected drift of the device’s zero from the 
time of last calibration is known), then a correction, equal to the best estimate of the 
drift, to each measured value of fuel mass should be made. 

3. Suppose the evaluator decides the following: 
a. Logbook data show that 0.21 g is the experimental standard deviation (square root of 

the variance) of the 36 observations. 
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b. The measuring device has no known systematic error:  the device was calibrated 
immediately before the measurements with a highly accurate standard (contributing 
negligible additional uncertainty) and the device was checked with the standard after 
the mass measurements and showed no drift, or change. 

c. The ±0.1-g accuracy is the entire range of the possible random error. 
d. There is no basis for estimating the shape of the probability distribution of the 

uncertainty. 
4. The evaluator revises what is known about uncertainty from the measuring device.  He 

assumes that ±0.1 g represents the entire range of the probability distribution of each 
observation and that the probability distribution is uniform (flat) over the range.  Therefore, 
the standard uncertainty of each observation is 0.1/√3 g (derived in Appendix G), and it is 
assumed symmetric about the observed mass value. 

5. #1, above, is revised to the following: 
a. The value of the fuel mass of 36 of the 100 fuel rods used in the configuration was 

observed. 
b. The mean value of fuel mass per rod was 580 g. 
c. The experimental standard deviation of the 36 observations was 0.21 g. 
d. The standard uncertainty of each observation from the measuring device is 0.1/√3 g = 

0.058 g. 
6. Now the evaluator wants to decide whether the 0.21 g is only from physical variation of UO2 

mass among rods, or whether the 0.21 g includes the 0.058-g standard uncertainty of the 
measuring device.  (Reference 1 in §4.3.10 says it is important not to “double-count” 
uncertainties.) 

a. Suppose he decides that the 0.21 g includes both physical variation among rods and 
the measurement uncertainty, so that 

  0.212 = umv
2 + 0.0582, where umv is the mass variation among the rods.  Therefore, the 

standard deviation of physical variation among rods may be estimated as 
22

mv 058.021.0u −= = 0.202 g. 
b. Then the two uncertainties in rod mass are 0.202 g, from physical variation among 

rods, and 0.058 g standard uncertainty of the measurement of each rod. 
 
 

C.1.1.2  keff uncertainty (effect of 0.022 g/rod) 
 

Uncertainty from simplification of the benchmark model.  The benchmark model uses xi = m , the 
mean fuel mass per rod, for all rods.  This is a simplification from the actual experiment, in which 
there is small physical variation (standard deviation of 0.202 g) of the fuel mass among the rods.  
Since the best estimate of xi (mean m ) is used in the model, there is no correction to keff of the 
benchmark model.  However, this simplification contributes uncertainty to keff of the benchmark 
model. 
 
To estimate the keff effect of this standard uncertainty from physical variation, add 0.202 g of UO2 
to the mass of every rod.  Divide the resulting Δkv by number of rods in the configuration, 
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N=100, to find the approximate effect from each rod, Δkj = 
100

k vΔ
.a  Since the physical variations 

among rods are assumed independent, add, in quadrature, the Δkj effect from each rod to get the 
keff uncertainty from rod variation.  The resulting reactivity effect is  

 

( )
N
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This is the keff uncertainty due to the mass variation among rods in the experiment compared to 
the simpler benchmark model, which has the same mass m  in each and every rod. 
 
Measurement uncertainty.  There is an uncertainty in mean mass of the rod due to the 0.058-g 
uncertainty in the observation of each rod from the measuring device.  The mean mass per rod is 
 

xi = ∑∑
==

==
n

1j
j

n

1j
j m

n
1m

n
1m . 

 
The combined variance of xi  (see the general formula in Section 2.4) is 
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So the standard uncertainty of xi due to accuracy of the measuring device is 
n

058.0  g. 

 

To find the effect, Δkmm, of this mass-measurement uncertainty, change xi by 0096.0
36
058.0 =  g 

and calculate Δkmm.  Since the evaluator has already calculated Δkv for changing all rods by 

δm=0.202 g, he  multiplies Δkv by ( ) 202.0
0096.0

m
0096.0 =
δ

.  So Δkmm = Δkv ⎟
⎠
⎞

⎜
⎝
⎛

202.0
0096.0

. 

 
Combined mass uncertainty, Δkmass.  The combined keff uncertainty due to uncertain fuel mass is 
the square root of the quadratic sum of the two above calculated uncertainties. 
 

2
mm

2
mvmass kkk Δ+Δ=Δ  

 

                                                 
a Actually, the Δkj’s are not the same, as discussed in Section C.2.  Rods at the center will contribute more than those 
near the edges due to greater neutronic importance of central rods.  But equal contributions from every rod may be used 
as an approximation. 
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More generally,  
  
Δki = Δkδxi

δxi

uiv
2

N
+ uim

2

n
   (C1) 

where 
Δki = change in keff due to standard uncertainty ui of parameter xi 

(In the example, xi is m , mean fuel mass in a fuel rod.), 
Δkδxi = change in keff if parameter xi is changed by δxi, 
δxi = increment of xi in the perturbed keff calculation, 
uiv = the standard uncertainty of xi representing physical variation of the parameter 

among units of the array, 
N = number of units in the array, 
uim = the standard uncertainty of xi due to measurement accuracy, 
n = number of measurements used to determine xi = m . 

 
Therefore, in the case of parameter xi whose value, the average of n measurements, is used for 
each of N fissile units of a critical configuration, the standard uncertainty used to obtain Δki for 
that parameter is  
 

  
u i = uiv

2

N
+ uim

2

n
.    (C2) 

 
 
The evaluator observes that if all 100 rods of the configuration had been measured to obtain the 
mean value of UO2 mass per fuel rod, so that n ≥ N,a then the resulting reactivity effect of the 
standard uncertainty would have been much simpler to calculate.  In this case, the result for 
Δkmass would have been the same obtained by assuming that the standard uncertainty in mass xi of 
each rod was 

N
21.0

N
058.0202.0 22

=+  g = 0.021 g. 

 
 

                                                 
a If n>N, according to Reference 1 (see, for example, §H.1.3.2) the “pooled” experimental standard deviation is divided 
by the square root of the number relevant to the current case, which is N, number of rods in the critical configuration. 
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C.1.2 Another acceptable answer 

C.1.2.1  Parameter standard uncertainty 
 
Suppose the evaluator makes the same judgments through #5 in Section C.1.1.1.  Then he decides 
that the observed experimental standard deviation 0.21 g does not include the uncertainty of the 
measuring device.  Perhaps he reasons that there are other random influences (e.g. rod variation, 
air temperature and pressure at times of measurement) besides the measuring device that cause 
the observed 0.21-g experimental standard deviation, and that the uncertainty of the device 
contributes additional uncertainty.  Or perhaps he has reason to believe that the experimentalists 
intended the 0.21 g to represent variation among rods and, therefore, the 0.21 g was after 
correction for the accuracy of the measuring device. 
 
(Including both the observed variation and the stated uncertainty of the measuring device follows 
the method of examples in Reference 1 (note 2 of §4.3.7 and §H.1.3.2).  In §H.1.3.2 the standard 
deviation of the mean of measurements is combined with the two standard uncertainties of the 
comparator (measuring device) – one standard uncertainty from possible random error and one 
from possible systematic error.) 
 
C.1.2.2  keff uncertainty, Δkmass (effect of 0.0231 g/rod) 
 
The evaluator knows from experience (e.g., Section C.1.1.2) that unless n (number of 
measurements of the parameter) is equal to N (number of rods in the array), it is necessary to 
make an estimate of physical variation among the rods and distinguish it from measurement 
uncertainties in order to obtain the combined keff uncertainty.  Therefore, he uses formula (C2) to 
find the standard uncertainty uxi.  The standard uncertainty representing physical variation among 
the rods is the observed standard deviation of the Type A measurement, σmv = 0.21 g.  The 
standard uncertainty of each mass measurement is σmm = 0.058 g.  Therefore, the standard 
uncertainty of the mean mass (fuel mass in each rod) is  

 

  
u i = umv

2

N
+ umm

2

n
= 0.212

100
+ 0.0582

36
= 0.00044 + 0.000093 = 5.34 ×10−4 = 0.0231 g. 

 
The evaluator obtains Δkmass by changing xi by 0.231 g and dividing the resulting Δk by 10. 

 
 
C.1.3  A third possible acceptable answer 

C.1.3.1 Parameter standard uncertainty 
 
Suppose the evaluator learns, from studying the mass-weighing device’s calibration certificate, 
that the 0.1-g accuracy of the measuring device is the entire range of a possible systematic error 
(see Section 5.0).  Therefore, ±0.1 g bounds the uncertainty of an unknown correction δcor that 
should be added to each measurement.  (For example, the correction might be the drift of the zero 
point, or calibration reference point, since the time of calibration.)  So each observation of mass 
should be corrected by a small amount, δcor grams, which is approximately the same for each 
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observation, but is unknown.  The calibration certificate also states that, based on repeated 
calibrations of other individual weighing devices of the same kind, the expected value of the error 
is zero and the distribution of the possible error about its expected value is approximately normal.  
Because the distribution is normal and not flat, 0.1 g represents approximately 3σ (not √3σ).  The 
standard uncertainty ucor of δcor is then 0.1/3 = 0.033 g (not 0.1/√3 = 0.058 g). 

 
The evaluator understands that the observed Type A experimental standard deviation, 0.21 g, 
probably includes both physical variation among the 36 measured rods as well as random 
uncertainty of the measurement procedure, but he does not know how to apportion the two 
sources of the observed random variation.  He decides to ask the experimenter to make some 
repeated measurements of a single mass sample of approximately 580 g, in order to obtain an 
estimate of the random uncertainty of the measurement procedure.  The result of 20 repeated 
measurements of the sample gave an experimental standard deviation of 0.08 g.  The evaluator 
takes this value as the experimental standard deviation of the random error of a measurement.  
The remaining 19.008.021.0 22 =−  g is assumed to be due to physical variation among the 
rods. 
 

The mean value of fuel mass per rod is xi = m = ( )∑ ∑
= =

+δ=δ+
N

1i

N

1i
icorcori m

N
1m

N
1 .  So the 

combined standard uncertainty of xi due to measurement uncertainties is 
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036.0
36
08.0033.0

2
2 =+= grams.  This standard uncertainty must be combined with uncertainty 

from physical variation, 0.19 g/√100 = 0.019 g.  Therefore, the combined uncertainty of the mass 
of fuel in a fuel rod is 041.0036.0019.0 22 =+  g/rod. 
 
C.1.3.2 keff uncertainty, Δkmass (effect of 0.041 g/rod) 

 
The reactivity effect of the ±0.041-g uncertainty of xi can be estimated by adding 0.041 grams of 
fuel mass to every rod to find Δkmass. 
 
Note that this is the largest of the possible Δkmass values considered.  This is because the 
uncertainty of the systematic error, which is estimated as zero and so requires no correction, 
contributes 0.033-g uncertainty to the mass of each rod. 

 

C.1.4  Other possible acceptable answers 
 

Other acceptable answers are possible, depending on available data and judgment of the 
evaluator.  The evaluator should attempt to discover what is known about the measurements and 
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uncertainties of the measuring devices.  Whatever the answer, it should be justified by including 
reference to the data, assumptions, and the reasons for the assumptions. 

 
 
C.2 Estimating more realistically the effect of random variation among units of an  
       array, Δkarray 
 

As described in Section C.1, the effect of the uncertainty in a parameter is calculated by varying 
the parameter in a keff calculation.  To find the effect of the random variation of a parameter 
among rods or units of an array, the Δkeff effect may be estimated by dividing by √N, the number 
of rods or units in the array.  (See Section C.1.1.2.) 
 
The derivation of Δkarray = Δkeff/√N included using Δkeff/N for the average effect of each rod.  
However, this approximation is not realistic, because it is known that rods near the center of the 
array have a greater neutronic importance than rods near the periphery.  Because the effects from 
each rod are added in quadrature (i.e., square root of sum of squares), this uneven weighting must 
be taken into account if the effect of random variation is desired. 

 
C.2.1 The correcting factor κcorr 
 

For all such parameters, a more realistic Δkeff effect of the random parameter variations in the 
configuration may be obtained by dividing Δk, obtained from changing all rods by the 
experimental standard deviation of the parameter, by the square root of the number N of rods 
multiplied by a correcting factor: 

Δkarray = 
N

k

corrκ

Δ  . 

The factor κcorr is a correcting factor introduced to take into account the unequal importance of 
fuel rods in the reactor core.  The order of magnitude of κcorr lies roughly between 0.5 and 1.a 
 
Since it is difficult to find the value of κcorr, an alternative method divides the array of N rods into 
l concentric zones of Nj rods (j = 1,...l), using for the standard uncertainty the expression 
 

∑
=

Δ
=Δ

l

j j

j
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2
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k
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=

=
l

jN
1j

N . 

 
Each Δkj is calculated with only the Nj rods in zone j changed. 
 
It is interesting to notice that, if κcorr equals 1 or if l  equals 1, then Δkarray is probably slightly 
underestimated.  Nevertheless it still may be considered a good approximation, as shown in 
recent calculations, comparing the formula to calculations using zones.  For small pitch (e.g. 1.1 
cm, 1.3 cm) the difference is larger, but still not significant.  Of course, as N gets larger, the effect 

                                                 
a  For large N, a better estimate for the interval is 0.8 to 1.  Since n is often very large and we divide by √N, then the 
uncertainty is small, so that the effect of κcorr differing slightly from 1 is very small for large N. 
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of slightly different correction terms κcorr becomes smaller, as mentioned above.  On the other 
hand, if κcorr⋅N equals 1, then Δkarray is overestimated. 

 
If l =N and all Nj are equal to 1, then the correct value is calculated.  However, this requires N+1 
calculations of keff that differ from each other by the characteristics of only one rod.  Therefore, 
the Δkeff’s are very small. 
 
If ui is too small to yield a reliable Δkeff, a larger variation δxi of the parameter is used to compute 
Δkeff.  The real change in keff will be 

i
i

eff u
x

k
k ×

δ
Δ

=Δ . 

Of course, this formula is only reliable for small variations, when the effect is linear. 
 
This treatment of uncertainty is explained in the following paragraphs by using one selected 
parameter (the outer clad diameter) and a progressive approach. 
 

 
C.2.2 Progressive approach 
 

Array Type 1 : array with N identical rods  
 
The keff change due to a variation of fuel-rod diameter can be evaluated as illustrated in Steps 1 
and 2, below. 

Step 1:   Two arrays, each with n identical fuel rods  
 
One way to obtain Δkarray is to consider two arrays, each of them with identical rods.  A reference 
calculation is performed for the first array, having rods with the mean diameter d .  Another 
calculation is performed for the second array, having rods with diameter d  + ud, where ud is the 
standard deviation of the diameter distribution of the fuel rods for the experiment. 
 
For Step 1, the Δk obtained by subtraction is equal to Δk1. 

 

  
Δk1 = k

eff d( )− k
eff d +u d( )     (1) 

 
Step 2:   keff variation due to one single rod in an array of N identical rods  
 
Assuming that the keff variation due to each rod is independent of the grid position, the variation 
of keff of an array of rods with diameter d  due to one single rod of diameter d  + ud, is given by 

 

N
k

k 1
rod

Δ
=Δ        (2) 
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However, as discussed above, this is not perfectly true.  Actually, each rod contributes according 
to its neutronic importance, which is proportional to the adjoint of the flux distribution.  The rods 
in the middle of the array contribute most to keff.  In fact, the contributions from rods near the 
center of the array are greater than Δk1/N.  (Note that, in the case of undermoderated arrays, 
peripheral rods located next to a water reflector will have higher worth than peripheral rods of an 
optimally moderated or overmoderated array.) 
 
Array Type 2 : array with no identical rods  
 
Suppose that each position of the grid holds one rod or another, diameters being different.  The 
position that each single rod takes is random, i.e., each position contains a random variable. 
 
The array variance is obtained by adding the variances of each rod: 

 
2
rodN

2
3rod

2
2rod

2
1rod

2
array k....kkkk Δ++Δ+Δ+Δ=Δ  

 
In addition, the variance of each position in this array is considered as identical to the one 
calculated in Step 2, above. 
 
Therefore, 
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and the standard deviation of the array due to the parameter is 

N
k

k 1
diam,array

Δ
=Δ     (3) 

 
(This formula gives also the standard deviation of the mean value of keff for N arrays containing 
identical rods, where each array has rods identical to one of the rods in the original array.) 

 
C.2.3 Finding a more realistic Δkarray 
 

1. Formula (1) overestimates the uncertainty worth, because it assumes that all rods are identical 
and have the same parameter change, which is not at all the real situation.  Rods have 
independent variations, so that there are compensating effects.  Formula (3) underestimates 
the uncertainty worth because unequal neutronic importance is not accounted for. 
 

2. The keff change due to each rod is not independent of the grid position, because the central 
rods are the most important in terms of reactivity worth and their contribution to a keff change 
is greater than Δkeff /N. 
 
Therefore, several Δkrod’s are bigger than Δkeff /N.  In general, when uncertainties are 
combined by taking the square root of the sum of their squared values, the bigger ones will 
dominate.  Therefore, Δkarray, diam should be larger than Δkeff /√N. 
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3. For this reason, it is recommended to consider several concentric zones (e.g. 3 zones) and to 
calculate for each zone the value Δkeff /Ni as explained hereafter: 

• calculation 1:  all rods of the whole configuration with diameter 
_
d , 

• calculation 2:  rods of zone 1 with diameter d

_
ud+ ,  

rods of zones 2 and 3 with diameter 
_
d , 

• calculation 3:  rods of zone 2 with diameter d

_
ud+ ,  

rods of zones 1 and 3 with diameter 
_
d , 

• calculation 4:  rods of zone 3 with diameter d

_
ud+ ,  

rods of zones 1 and 2 with diameter 
_
d ,  

 
The standard keff uncertainty for the array is 
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where each Δkj is the difference between results from calculation 1 and the calculation where 

rods of zone j have diameter d

_
ud+ , and each Nj is the number of rods in zone j. 

 
4. Another way to evaluate the uncertainty worth is to use the correction factor κcorr in the 

formula 

Δkarray = 
N

k

corrκ

Δ .      (5) 

Here Δk is equal to Δk1 in Step 1 in Section C.2.2.  It is obtained by subtracting the result of 

calculation 1 from the result of a calculation where all rods have diameter d

_
ud+ , and N = 

∑
=

3

1j
jN .  In this case, the correction factor κcorr is obtained by equating formulae (4) and (5). 

 
 

C.2.4 Example:  Uncertainty in fuel-rod diameter 
 

As mentioned in the introduction of this appendix, two cases can be considered, according to the 
fact that the uncertainty of the parameter (here the rod diameter) is Type B (not of statistical type) 
or is Type A (statistical type). 
 



Guide to the Expression of Uncertainties for the Evaluation of Critical Experiments 
 
 
 

         Revision:  5 
  Page 53 of 94   Date:  September 30, 2008 

The rod diameter values have been measured (using a micrometer, for instance) on a sample of n 
fuel rods:  this allows a Type A evaluation of uncertainty.  It was observed that in many cases, the 
parameter distribution is nearly centered in the middle of the tolerance range, is much narrower 
than the tolerance range, and shows almost the shape of a normal distribution. 
 
As a numerical application, let us consider the U(4.738%)O2 Zircaloy-clad fuel rods used for the 
PWR experiments in Valduc: 
 
• diameter design value :   9.50   ± 0.06 mm  
• value from 300 measurements :  9.4924 ± 0.0044 (1σ) mm 
 
The observed distribution shows almost the shape of a normal distribution. 
 
The minimum and maximum values are 
• diameter design value :   9.44  ,  9.56          mm 
• value from 300 measurements :  9.479  , 9.506  (3σ) mm 
 
The experimental standard deviation of the mean is the experimental standard deviation divided 
by √n, or 0.0044/√300 = 0.000254 mm.a 
 
By application of §4.2 in Reference 1, the standard uncertainty du  is this experimental standard 
deviation of the mean, 0.000254 mm, for configurations containing ≥ 300 rods. 
 
The mean value d  is used for each and every rod in the benchmark model.  The standard 
uncertainty of d  is used to compute the uncertainty on keff by using the formula 
 

  
Δkd =

keff d( )− keff d + ud( ) + keff d( )− keff d − ud( ){ }
2

 

 
 
in which the values of keff are obtained by special Monte Carlo or SN calculations. 
 

                                                 
a  However, this does not include possible systematic error (systematic uncertainty) of the diameter measurement.  See 
Section C.11. 
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This differs from the uncertainty calculated in the previous section in the following ways: 
Previous section (Section C.2.3) This section (Section C.2.4) 

Uncertainty due to physical variation 
among rods, as opposed to their all 
being the same.  (This is an uncertainty 
due to model simplification.) 

Uncertainty of the mean value, used for 
all rods in the model.  (The true mean 
value is not known.  This uncertainty is 
an estimate of the possible error in the 
mean value.) 

Values of N and Ni in the formulae 
refer to number of rods in the critical 
configuration. 

Value of n in the formulae refers to 
number of rods for which the parameter 
was measured. 

This method accounts for the fact that 
not all rods have the same neutronic 
importance. 

It is not necessary to account for 
unequal importance because, to 
calculate the effect of this uncertainty, 
all rods are changed by the amount of 
the uncertainty. 

This uncertainty represents the effect of 
actual physical variation, not 
measurement uncertainty. 

This uncertainty represents the effect of 
our not knowing the true mean value. 

 
 

 
C.2.5 Uncertainty in spacing of fissile units 
 

Consider the case of an array of N equally spaced fissile rods or units.  Pitch uncertainty (from 
either variation in rod positions or measurement uncertainty) depends upon the grid for the rods 
or units and their placement in the grid.  In the case of rods, random variation of pitch is due to 
the gap between the rod and the grid hole and also to the location of the hole itself in the grid.  In 
rare cases, it may be affected by slight bowing of the fuel rods.   
 
Uncertainty in pitch may include both random uncertainty and systematic uncertainty.  If the 
standard deviation of the distance between fissile units has been determined and Δk is calculated 
for an increase in the distance between all units by that amount, the effect from each unit may be 

roughly estimated as 
  
Δk
N

.  (This is only a rough estimate partly because the value of pitch at the 

center of an assembly has a larger effect than the value of pitch near the edges due to the greater 
neutronic importance at the center of an assembly.)  Then the total effect on keff of the random 
variation among unit positions is the total of the effects from each, combined, as usual, as the 
square root of the sum of their squared values: 

  

Δk
N

⎛ 

⎝ 
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2

i

N

∑ = N
Δk( )2

N2 = Δk
N

. 

 
Another example of random spacing uncertainty is that due to holes in a grid plate being larger 
than the fuel rods in them.  Rods are free to move in any direction within these holes.  Therefore, 
assuming a normal distribution of rod positions within the hole, the effect of changing the pitch 
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by Δr (difference in radii of hole and rod) divided by 3 N  gives an estimate of the effect of this 
random-spacing standard uncertainty. 
 
This random spacing uncertainty from rods not being centered in their holes should not be 
confused with the uncertainty in the mean pitch value, which applies to the entire array.  The 
uncertainty in mean pitch comes from possible imprecision in manufacture of the grid, so that 
hole centers might be, for example, actually spaced 1.2001 cm apart (mean value), rather than 
1.2000 cm apart, as specified for fabrication of the grid (and as specified in the benchmark 
model).  The standard deviation or tolerance in pitch is specified by the grid manufacturer, and/or 
is measured by the experimentalists.  If the uncertainty (standard deviation or tolerance in hole 
spacing) is specified by the manufacturer, he should clearly differentiate between uncertainty in 
the mean spacing, or pitch, which applies to the whole array, and random spacing uncertainty.  If 
pitch has been measured by the experimentalists, the standard uncertainty in mean pitch is equal 
to the experimental standard deviation of the pitch measurements divided by the square root of 
the number of measurements.  The Δkeff effect is calculated for a change to the entire array by the 
standard uncertainty of mean pitch.  It should not be divided by N . 
 

 
C.3 Uncertainty in fuel-rod linear density (including example of perfect correlation) 

 
Usually, the following quantities are given for the fuel rod: 

• the pellet diameter D ± ΔD,  
• the pellet density ρ ± Δρ, 
• the fissile column mass M ± ΔM, 
• the fissile column height L ± ΔL. 

The linear density ML, or fuel mass per unit length, is equal to the ratio M/L. 
 
From the point of view of neutronics, the main parameter is the linear density.  In the 
determination of effects on keff of uncertainties due to diameter and density, we should be 
cautious not to include the effect of any uncertainty twice.  To avoid this, the density-uncertainty 
effect should be obtained by keeping constant the pellet diameter, and the diameter-uncertainty 
effect should be obtained by keeping constant the linear density. 
 
Two densities may be known: the pellet density and the fissile column density deduced from the 
linear density, the latter one being the best one to use.  
 
The uncertainty on the fissile column fuel density ρ (g/cm3) is calculated by using the following 

formula:  2
L

D
M4

π
=ρ  

in which:  ML = fuel mass per unit length of fissile rod (g/cm) 
D   = pellet diameter (cm) 

 
The general formula for the combined variance (see Section 2.4) of ρ gives 
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assuming that ML and D are perfectly correlated with correlation coefficient r=1.  Perfect 
correlation with r=1 means that whenever a measurement of ML exceeds the mean of ML, then a 
measurement of D correspondingly exceeds the mean value of D; and similarly, whenever a 
measurement of ML is less than the mean of ML, then a measurement of D for that rod is 
correspondingly less than the mean value of D.  This is reasonable, but the correlation is not 
necessarily true.  Other influences may affect ML, such as material density of the particular 
pellets, flatness of the pellets’ upper and lower surfaces, and chips in the edges of some pellets.  
Ideally, the covariance would be measured, using simultaneous measurements of D and ML.  (See 
the formulas for covariance in Section 2.4.) 
 
Guidance from Reference 1 (§F.1.2.1) says that the covariance of two measured quantities may 
be taken as zero or treated as insignificant in the following three cases: 

1. if the two random variables representing the physical parameters are uncorrelated 
because they were measured independently of each other; 

2. if either can be treated as a constant, or 
3. if there is insufficient information to evaluate their covariance.a 

 
Using the formula for ρ in terms of ML and D, 
 

2
L D

4
M π

=
∂

ρ∂  and 3
L

D
M8

D π
−=

∂
ρ∂ .  These values can be used in the formula for the combined 

uncertainty of ρ (with or without the correlation term, as appropriate) to find the standard 
uncertainty in fuel density. 
 

 
C.4 Combining enrichment uncertainties of two batches (including example of perfect 
        correlation) 
 

If fuel pellets come from two or more batches, each with its own measured enrichment value and 
standard uncertainty, then the overall value of the enrichment and its standard uncertainty 
(combined from the uncertainties observed for each batch) are weighted by the estimated fraction 
of pellets from each batch.  If the fraction from each batch is unknown, then the uncertainty of the 
fraction is also included in the combined uncertainty of the parameter. 
 

                                                 
a  It should be pointed out that if there is an unknown covariance, omitting it will lead to an overestimated or 
underestimated uncertainty.  An argument can be made that a covariance cannot be simply ignored just because there is 
insufficient data to estimate it.  The effect of possible correlations on the uncertainty can be checked.  In cases where 
the covariance is unknown but expected to be positive, it is sometimes recommended that perfect correlation be 
assumed (so that the covariance is at its maximum value) to estimate its maximum effect on the uncertainty.  Or some 
kind of Type B estimate of covariance might be appropriate.  (personal communication, Larry Blackwood, August, 
2002) 
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For example, suppose fuel rods in a critical configuration each contain fuel from one of two 
batches.  Consider the enrichment and its uncertainty.  Suppose the enrichment of the first batch 
is given as 2.36 ± 0.03 wt.% 235U and the enrichment of the second batch is 2.34 ± 0.02 wt.% 
235U, with uncertainties reported as standard deviations.  Suppose 40±2% of the rods contain fuel 
from the first batch, and 60±2% of the rods contain fuel from the second batch, where the ±2% is 
also an estimated standard deviation.  The average enrichment is  

2211 efefe ×+×= = 0.4×2.36 + 0.6×2.34 = 2.348 wt.% 235U. 
 
A first estimate for the combined uncertainty in enrichment, σe, is 
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( ) ( ) ( ) ( ) 0047.002.034.202.036.202.06.003.04.0 2222 =×+×+×+×=  
= 0.0686 wt.% of 235U. 

 
However, correlations must be considered.  The two measured enrichments are assumed to be 
uncorrelated (e.g., the two batches were made at different times and at different factories).  
Enrichments are obviously not correlated with their fraction in the core.  But there is a correlation 
between f1 and f2.  Because the sum of f1 and f2 is always the same, the correlation coefficient 
between them, r(f1,f2), is –1.  According to the equation in Section 2.4, the correlation term is 

( ) ( ) .0044.002.002.034.236.221uuee2f,fruu
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If this correlation term is included under the square-root sign, the result for the combined 
uncertainty in enrichment is 0044.00047.0 − = 0.017 wt.% 235U.  So the enrichment and its 
standard uncertainty are 2.348 ± 0.017 wt.% 235U. 
 
If the fractions f1 and f2 are known exactly (if rods from each enrichment batch were identified, 
and 4 rods of every 10 that were inserted in the core were from the first batch and 6 were from the 
second), then uf1 and uf2 are each zero.  Then, the combined uncertainty in enrichment ue is  
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∂ = 0.017 wt.% 235U.  This result has the same value as the result when 

batch fractions were only known to ±2%.  The two results are so similar because of the negative 
correlation, as can be seen by comparing the correlation term with the two terms that include the 
fraction uncertainties. 
 
In general, if there are several batches with standard uncertainties uei and if fractions fi of each 
enrichment are known, the standard enrichment uncertainty is ( )∑ ×=

i

2
eii uf . 
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C.5 Correlation between mass and density uncertainties 
 

Mass and density are an example of two input parameters that depend on a common independent 
parameter, mass.  Suppose that both mass and density with their standard uncertainties are given 
in the experimental data.  The evaluator’s task is to find the effect on keff from their uncertainties. 
 
The general case is described in §F.1.2.3 of Reference 1.  Each of two parameters, x1 and x2, is a 
function of several independent variables (q1, q2, q3, etc.).  The combined uncertainty of each 
parameter xi can be calculated from 

 
u i = ∂xi

∂q j
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But what if the two parameters have one (or more) independent variables in common?  Suppose 
that both x1 and x2 depend on q2.  The covariance between x1 and x2 due to their common 
independent variable q2 is given by 

cov(x1,x2) = 2
2q

2

2

2

1 u
q
x

q
x

∂
∂

∂
∂ . 

 
Therefore, using the first formula in Section 2.4 (from equation 13 in §5.2.2 of Reference 1), the 
combined uncertainty of keff due to both x1 and x2 is equal to 
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If x1 is mass and x2 is density, both parameters are a function of the independent variable mass, 
m.  The functions are 
 

x1 = m  and  x2 = ρ = m/v, 
 
where v is the volume, another independent variable.  Assume, for this example, that v is known 
and has negligible uncertainty.  Then the standard uncertainty in keff due to mass and density is 
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However, complications arise because volume and dimensions contribute additional uncertainty, 
and density is not a linear function of volume. 
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To avoid the complications of including correlations, it is recommended (§5.2.4 of Reference 1), 
to calculate the combined keff uncertainty from parameters that are not correlated, if possible.  For 
example, in the present case, it would be preferable to calculate Δkeff using uncertainties in mass 
and dimensions, rather than using density uncertainty. 
 
However, mass uncertainty may be represented by change in density if volume is kept constant.  
Similarly, dimension uncertainty may be represented by change in density if mass is held constant 
and if each dimension (whose measurement is uncorrelated with measurement of other 
dimensions) is varied separately. 

 
 
C.6 Uncertainty from impurities 
 

This section provides guidance on determining the effect on reactivity due to a Type B 
uncertainty, impurities.  In some cases, the measured value of an impurity may be so small or is 
so poorly known that the presence of the parameter itself (the impurity) may be considered an 
uncertainty.   
 
However, in one case, even small amounts of impurities may have very large effect.  This is the 
case of impurities in fissile material.  If the impurity mass is included in the reported fuel mass 
(or solution density, in the case of fissile solution), the effect of impurities may be large due to 
their replacing fuel (or solution).  In this case, two effects are calculated separately:  1) 
subtracting fuel mass equal to the best estimate of the total mass of impurities,  2) adding best 
estimates of the impurities.  Often, the first effect is the larger one.  It is easy to include in the 
benchmark model by simply reducing the fissile material by the total mass of impurities.  The 
smaller effect, the impurities themselves, may be included in one of three ways, discussed in 
more detail in Section C.6.2: 

 Include best estimates of impurities in the benchmark model. 
 Omit impurities and, instead, include the calculated effect of best estimates of 

impurities as a small correction to the benchmark-model keff. 
 Omit impurities and add additional uncertainty.  (This option is usually chosen when 

identities and amounts of impurities are poorly known.) 
 
C.6.1 Type B uncertainty 
 

The Type B parameter uncertainty may be given as x0 ± Δx, where Δx represents the tolerance, 
assumed to bound the possible values of the parameter.  The standard uncertainty is Δx/√3 or 
Δx/3 according to whether the parameter distribution is expected to be flat or normal. 
 
Sometimes, a tolerance is given as [x0+Δx1, x0-Δx2].  The best estimate of the value of parameter 
x may be x0 or it may be chosen by using an estimated probability distribution.  If a uniform 
probability distribution seems reasonable, the parameter value is then xi = 

2
xx

x 21
0

Δ−Δ
+ , varying 

between x0+Δx1 and x0-Δx2. 
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If the parameter, given as x0 ± Δx, is expected to follow a Gaussian distribution within the bounds 
of the tolerance (perhaps indicated by previous measurements on the same type of parameter), the 
standard uncertainty is Δx/3.  In order to find the corresponding change in keff, two calculations 
are run, taking a parameter value successively equal to x0 + Δx/3 and x0 - Δx/3.  The contribution 
to the keff uncertainty is then 
 
Δki = {|kref – kx0+Δx/3| + |kx0-Δx/3 - kref|} / 2  =  |kx0+Δx/3 -  kx0-Δx/3| / 2. 
 
Note that, as mentioned previously, whether the uncertainty is Type A or Type B is not relevant 
to the calculation of the effect of the uncertainty on keff.  Type A or B only refers to two methods 
of determining the standard uncertainty (which is always defined as the best estimate of the 
standard deviation) of a measured parameter. 

 
C.6.2 Impurities 
 

The effect of impurities must be assessed.  There are three possible results of measurements of 
impurities: 1) those whose concentrations can be measured (with an uncertainty), 2) those that 
can be detected but the amounts are not known because they are so small, and 3) those that are 
not detected. 
 
The impurity that is detected but is below the detection limit, DL, may be considered to have an 
average value of DL/2, with bounding values 0 and DL.a  Therefore, if impurities are omitted in 
the benchmark model, the effect of the impurity can be divided in two parts: one half (DL/2) is 
considered as a correction to keff, whereas the other half (DL/2) is considered as an uncertainty 
that bounds the value.  Since there is no more knowledge on the distribution, one may assume 
that the distribution is equally probable within the interval, and therefore the corresponding 
standard uncertainty will be DL/(2√3). 
 
Consider fuel rods in water.  Concentrations Ci (μg/g UO2 or PuO2) are given for all impurities in 
the fuel.  In a thermal spectrum, it is possible to determine for each element concentration an 
equivalent boron concentration CBi (μg/g UO2 or PuO2) giving the same reaction rate of 
absorption.  For an element i, we have: Ni σai = NBi σaB, or 

 

B

aBBi

i

aii

A
C

A
C σ

=
σ

 

Therefore, 
i

B

aB

ai
iBi A

A
CC

σ
σ

=  

with:  Ni concentration (atom/barn-cm) of impurity, 
  σai thermal absorption cross section of impurity, 
  Ci concentration (μg/g UO2 or mixed oxide) of impurity, 
  Ai atomic mass of impurity, 

NBi concentration (atom/barn-cm) of boron equivalent to the impurity, 

                                                 
a However, this depends on the analytical laboratory’s definition of detection limit.  For example, it might be half of the 
amount that can be detected with certainty. 
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  σaB thermal absorption cross section of boron, 
  CBi equivalent boron concentration (μg/g UO2 or mixed oxide) of impurity, 
  AB atomic mass of boron. 

 

The equivalence coefficient ci is defined as 
i

B

aB

ai

i

Bi
i A

A
C
C

c
σ
σ

==  for each element. 

 
The following table gives equivalence coefficients ci for impurities found in fuel pellets. 

 
Table C.1.  Equivalence coefficients (ci = CBi / Ci) of impurities in a thermal spectrum 

 

Element Atomic 
mass σai    ci×104 Element Atomic 

mass σai   ci×104 

B 10.811 760.0 10,000 In 114.82 197.0 244.06 
Ag 107.868 63.0 83.08 Li 6.941 71.0 1455.09 
Al 26.981 0.23 1.21 Mg 24.305 0.063 0.37 
C 12.011 0.0035 0.04 Mn 54.938 13.3 34.44 
Ca 40.078 0.43 1.53 Mo 95.94 2.5 3.71 
Cd 112.411 2520 3188.92 N 14.00674 1.9 19.30 
Co 58.9332 37.19 89.77 Ni 58.893 4.5 10.87 
Cr 51.9961 3.1 8.48 Pb 207.2 0.171 0.12 
Cl 35.453 33.6 134.82 Si 28.0855 0.17 0.86 
Cr 51.996 3.1 8.48 Sm 150.36 5600 5297.95 
Cu 63.546 3.8 8.51 Sn 118.71 0.61 0.73 
Dy 162.5 930.0 814.11 Ta 180.9479 20.0 15.72 
Eu 151.96 4600.0 4306.07 Th 232.038 7.4 4.54 
F 18.9984 0.0095 0.07 Ti 47.88 6.1 18.12 
Fe 55.847 2.56 6.52 V 50.9415 5.0 13.96 
Gd 157.25 48800 44144.99 W 183.85 18.0 13.93 
Hf 178.49 106.0 84.48 Zn 65.39 1.1 2.39 

 
 

By adding the equivalent boron concentrations of each impurity, all impurities can be treated as 
boron giving the same absorption rate in the thermal system.  The summary natural-boron 
equivalent of impurities is then 

∑∑ =×=
i

Bi
i

iiB CcCC . 

 
This can be used to calculate the keff correction and uncertainty due to impurities that are omitted 
from the benchmark model. 
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C.7 Uncertainty in geometry: the diameter of a cylindrical tank 
 

The diameter of the cylindrical tank containing the fuel lattice or solution is known, either by the 
nominal value and its tolerance, or by calibration measurements. 
 
In the first case, (a Type B uncertainty) if only the tolerance [-t-, +t+] is given and there is no 
specific knowledge about the diameter within the tolerance range, the diameter distribution may 
be assumed to be equally probable in the interval, and the diameter expected value corresponds to 
the midpoint of the interval.  Therefore, the change in keff is obtained by taking a standard 
uncertainty equal to  
(t- + t+) / 2√3. 
 
In the second case, the diameter could be better known through calibration measurements: 
calibrated volumes of water are poured into the tank and the corresponding water height is 
measured.  From the reported set of both values, the tank internal diameter is deduced and is valid 
in the range of corresponding heights.  A sample of "N" diameter values is available.  From this 
sample, it is possible to know the distribution law and its properties (mean, standard deviation).  
The standard deviation is used as the value of standard uncertainty. 

 
 
C.8 Example of small measurement errors having a large systematic effect 
 

An example of small measurement errors in array parameter values causing large effects occurred 
during an ICSBEP evaluation.  The experiments were thin, steel-clad, highly enriched UO2-Al 
fuel rods at two close pitches, performed at RRC Kurchatov Institute in 1997.a  The combined 
total keff uncertainty was ~0.5%, a typical value.  Calculated keff results were ~1.00, as expected, 
except for configurations at the larger pitch, which had calculated keff values that were 1.5% 
high.b  Fortunately, components of the experiment were still available so that parameter 
measurements could be checked.  The experimentalists discovered that the problem was the steel 
clad.  The nominal thickness was 0.1 cm.  More accurate, clad-volume measurements (measuring 
volume changes from displacement of water) gave an average thickness of 0.119 cm.  The clad 
density, reported as 8.0 ± 0.2 g/cm3, was measured and found to be 7.86 ± 0.07 g/ cm3.  The new 
clad dimensions and density, when used for all fuel rods, gave good calculated results for both 
pitch values (within 0.3% of the expected keff values).  The combined effects of the uncertainties 
of clad OD, thickness, and density had not predicted the possibility of the high keff values, even 
though the uncertainties bracketed the revised parameter values.  This is because the uncertainty 
effects had been combined as if they were random among the rods (dividing by √N), rather than 
systematic. 

 

                                                 
a HEU-COMP-THERM-011, -012, -013, and –014. 
b As discussed at the ICSBEP meeting in Dijon, France, May, 1998. 
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C.9 Combining random, systematic, round-off, and sampling uncertainties of a 
        parameter measured for a collection of pieces 
 

The following equations can be used for estimating the uncertainty of a parameter for a collection 
of pieces of material based on measurements and uncertainties of some or all of the individual 
pieces.  For our purposes, the collection usually refers to a critical assembly.  Cases 1 and 2 apply 
when measured values for all pieces of the collection are known.  An example of such an 
application is the estimation of uranium mass uncertainty for the Big Ten critical assembly  
(IEU-MET-FAST-007).  Big Ten is a uranium metal cylinder made up of many pieces of 
different enrichments, sizes, and shapes. Another example is the mass uncertainty for the Zeus 
assembly (HEU-MET-INTER-006).  Cases 3-5 apply to pieces that may not all have been 
measured but are nominally the same, such as assemblies of fuel rods or cans of fissile solution. 
 
The cases described here concern the uncertainty in total mass of the collection.  However, the 
equations may be applied to the uncertainty of other parameters besides mass for collections of 
items that have been measured individually.  
 
These equations apply when there are no correlations among the measurement uncertainties 
considered, which is often a reasonable assumption.  (If there are correlations among the 
uncertainties, then additional terms would be required in the calculation.  See Section 2.4).  

 
C.9.1  Background and definitions 
 

There are four types of uncertainty terms to consider when calculating the uncertainty in the mean 
mass or total mass of an assembly: 
 
uph = 1σ uncertainty due to physical variation in the mass or density from piece to piece 
ur = 1σ random mass-measurement uncertainty 
us = 1σ systematic mass-measurement uncertainty 
rr = round-off resolution  
 
The first uncertainty term uph due to physical variationa is also sometimes called the “sampling 
uncertainty.”  It is a characteristic of collections of individual pieces.  This term is non-zero only 
when the set of pieces that were measured is not the same as the set of pieces used in the 
assembly (see Cases 3-5 here).  It is discussed further in Section C.12.  The other three terms all 
derive from the individual measurements that were made.  
  
The standard uncertainty of a single measured mass value of a particular piece xi is 
 

uxi = uri
2 + usi

2 + rri
2

12
         (1) 

 
The three uncertainty components uri, usi, and rri are defined below. 

                                                 
a Note that possible effect of physical variation on keff from unequal importance of relative positions in the assembly 

when the mean mass or density is used in the model is not considered here. This is discussed in Section C.2.  
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The sources of uri are random variations in the measuring device and procedure. The value 
uri may be estimated by the standard deviation of results of several weighings of one typical piece 
(Type A) or by some other method (Type B), such as by the specified accuracy of the measuring 
device.  
 
The value usi is the uncertainty of the systematic error. A systematic error occurs when a 
series of measured values are incorrect by approximately the same amount. An example of 
systematic error is incorrectly zeroing the measuring device.  Unlike random uncertainty, 
repeated measurements of the parameter cannot reduce or reveal the systematic uncertainty. 
However measurements that show trends over time (called “drift”) or with scale of the measuring 
device can reveal the existence of systematic error that changes with time or with scale.  
Estimations of systematic uncertainty can be based on such trends. Another way to estimate 
systematic uncertainty is by using results of occasional calibrations of the measuring device with 
a standard unit. 
 
If the magnitude of a systematic error becomes known, it is added as a correction to the parameter 
value. But uncertainty of the exact value of the correction remains; this possible systematic error 
is called the systematic uncertainty.    
 
The third kind of uncertainty, rri, corresponds to the smallest readable unit marked on the 
scale of the measuring device or to numerical round-off, whichever is larger.  If, for example, 
measurements are made to the nearest gram, then rri is 1 gram, and it is assumed that the true 
value can be anywhere within ±0.5 g of the stated value and has a uniform probability 
distribution.  Therefore, the standard uncertainty for each piece is rri/(2√3)= rri/√(12).  For 
example, if rri is 1 gram, this standard uncertainty is 0.29 grams. 

 
C.9.2  Particular Cases 
 

In the following sections, equations for calculating the uncertainty of the total assembly mass are 
discussed for particular situations regarding the selection of pieces used and measured that may 
occur in an experiment. Each equation combines the uxi of the individually measured pieces plus 
estimates of the uph term when appropriate.  Note that in cases where the measurement 
uncertainties uri, usi, and ri are assumed to be the same for all pieces measured, the subscript i is 
dropped. 
 
In all cases, the total mass of the assembly is equal to the mean of the measured masses 
times N, the number of pieces used in the assembly.  Whenever the total is obtained by 
multiplying a mean mass by the number of pieces N, then by standard uncertainty propagation, 
the uncertainty in total mass is 
 

  

uT = N2ux 
2

= N2 uphx 
2 + urx 

2 + usx 
2 + rrx 

2( )
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where the terms in parentheses are (in the order in which they appear) the uncertainties in the 
mean mass due to   

- piece-to-piece physical variation,  
- possible random measurement errors,  
- possible systematic errors, and  
- round-off  

in the n measured mass values.   
 
First, consider each of the 4 types of uncertainty of the mean. 
 

  uph x   This uncertainty of the mean value due to physical variation is also called the sampling 
uncertainty.  It is also sometimes called “the uncertainty of the mean,” referring to cases when the 
set of measured pieces is different from the set of pieces in the collection.  If the set of all pieces 
of the collection is identical to the set of pieces measured and used to determine the mean or sum 
of the collection, this uncertainty due to physical variation is zero.  It is further discussed in 
Section C.12. 
 

  ur x   This random measurement uncertainty of the mean is due to random variations in the 
measuring device and procedure.  Assuming the measurements are independent, the square of this 

uncertainty is 
  
ur x

2 = ∂x
∂xi

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i=1

n

∑
2

uri
2 = 1

n
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n

∑
2

uri
2 = n × 1

n
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

ur
2 = ur

2

n
 whenever the random 

measurement uncertainties of each xi are the same.  So 
 
ur x = ur

n
. 

 

  usx   The systematic uncertainty is the uncertainty of the systematic error, which is an error that is 
the same (both in magnitude and in sign) for each measured piece.  A non-zero estimate of the 
systematic error can be added as a correction to the parameter value, but usually the systematic 
error is estimated as zero.  Because the systematic uncertainty is the same in magnitude and sign 
for each piece (although whether the sign is + or – is not known), the systematic uncertainties add 
algebraically rather than quadratically.  Therefore the systematic uncertainty of the mean value is 

  
usx = ∂x

∂xi

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i=1

n

∑ usi = n × 1
n

us = us . 

 

  rr x   The roundoff error is assumed to be random for each of the n measured pieces.  Therefore the 
roundoff uncertainties of the n measured pieces are combined quadratically to obtain the roundoff 
uncertainty of the mean.  (It is assumed that the mean value itself is not rounded.a)  The value rri 
is the larger of the smallest readable unit of the scale of the measuring device and the last decimal 
place of the rounded value.  The probability distribution of the true value of the mass of each of 

                                                 
a If the mean value is rounded, then the sum, N×  x, includes an error equal to N times the value of the dropped or added 
increment. 
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the n measured pieces is assumed to be uniform within the interval ±0.5 rri.  When rri is the same 
for each of the n measured pieces, the squared roundoff uncertainty of the mean value is  

  
rr x

2 = ∂x
∂xi

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i=1

n

∑
2

rri
2

12
= 1

n
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n

∑
2

rr
2

12
= n × 1

n
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
rr

2

12
= rr

2

12n
  and 

 
rr x = rr

12 n
 . 

 
 
Further consideration of the individual uncertainties gives the equations for the following cases.  
In Cases 1 and 2, the set of pieces measured is the same as the set of pieces used in the assembly.  
For these cases, the uph term for the uncertainty due to the physical variation in mass from piece 
to piece does not appear in the equations because, of course, its effect on the uncertainty in the 
mean or total mass for the assembly goes to zero when the mean or total mass is calculated from 
the measured masses values of all pieces of the assembly.  (This uncertainty is discussed in 
Section C.12.)  The formulas in Cases 3-5 are used when all pieces are nominally the same and 
have the same measurement uncertainties, but the set of pieces measured is not identical to the set 
used in the assembly.  More explanation of these equations is given at the end of this section. 
 
Case 1.  All N pieces in the assembly are measured and have the same measurement 
uncertainties. 
 
For Case 1, the mass of the assembly is calculated as 
 

  
T = xi

i=1

N

∑  = N x          (2) 

where T is the total mass, x = 1
N

xi
i=1

N

∑ , and xi is the measured mass of the ith piece in the 

assembly. 
 
Since the uncertainties are the same for all of the N pieces measured, the standard uncertainty of 
T is 
 

12
NruNNuu

2
r2

s
22

rT ++=         (3) 

 
where ur, us, and rr are the common values for all N pieces. 
 
Because the measured mass of every piece being used has been included in the sum, there is no 
uncertainty in the total mass or in the mean mass due to random physical variation in mass from 
piece to piece, i.e., uph = 0.  
 
Case 2.  All N pieces are measured and their uncertainties are different. 
 
This case might occur when pieces are of different sizes.  The formula for total mass is the same 
as for Case 1 except that each individual piece is treated explicitly.  The uncertainty is 
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12

r
uuu

N

1i

2
ri2N

1i
si

N

1i

2
riT

∑
∑∑ =

==

+⎟
⎠

⎞
⎜
⎝

⎛+=         (4) 

 
where uri, usi, and rri are the uncertainty values for the ith piece in the assembly. 
 
Case 3.  Only n of the N nominally equivalent pieces in the assembly are measured and they 
have the same measurement uncertainties. 
 
For Case 3, it is assumed that the n pieces measured have been randomly selected from the N 
pieces used in the assembly, so that statistical properties of mean and variance estimates apply 
(e.g. the equations in Section C.12). 
 
When only a subset n of the N pieces in the assembly have been measured, the total mass is 
estimated as 
 

xNT =            (5) 
 
where x  is the mean mass of the n measured pieces 
 

∑
=

=
n

1i
ix

n
1x .          (6) 

 
The uncertainty in T in this case is 

uT = N2 N − n
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1
n
⎛ 
⎝ 
⎜ 
⎞ 
⎠ 
⎟ sn

2 − ur
2( )+ ur

2

n
+ us

2 + rr
2

12n
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

      (7) 

 
where sn

2 is the variance of the sample, Equation 6 in Section C.12. 
 

sn
2 =

(xi − x )2

i=1

n

∑
n −1

.           (8) 

 
The terms in brackets are the uncertainties of the mean x .  The first term, which is the uph term 

due to physical variation among pieces, includes the “finite population correction” N − n
N

, which 

is discussed further in Section C.12.  
 
  
Case 4.  The N pieces are selected from a larger population of N’ nominally equivalent 
pieces.  All N’ pieces have been measured, but it is unknown which N were selected.  All 
measured pieces have the same measurement uncertainties. 
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In this case it is assumed that values for the mean and standard deviation of the N’ pieces are all 
that is known and available for use in the uncertainty calculations for the subset of N pieces.  The 
formula for the total mass is still the same as Equation 5 except that now the mean x  is based on 
measurements of N’ items. 
 
Equation 7 becomes 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+++−⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ −=

'N12
ru

'N
uus

N
1

'N
N'NNu

2
r2

s

2
r2

r
22

T

     (9) 

 
where now the estimate of s2 is calculated as 
 

1'N

)xx(
s

'N

1i

2
i

2

−

−
=
∑

= .          (10) 

 
Case 5.  The N pieces are selected from a larger population of N’ nominally equivalent 
pieces of which n pieces have been measured.  The number of pieces common to N and n is 
k, but the number k may not be known. All measured pieces have the same measurement 
uncertainties. 
 
The expression for the uncertainty in total mass isa  

 
uT = N2 N + n − 2k

N
⎛
⎝⎜

⎞
⎠⎟

1
n

⎛
⎝⎜

⎞
⎠⎟

s2 − ur
2( )+

ur
2

n
+ us

2 +
rr

2

12n
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

    (11) 

 
If k is not known, then, 
 
if N + n  ≤ N’,  k = 0; 
 
if N + n > N’,   k = N + n – N’. 
 
As for the previous cases, s2 is the experimental standard deviation of the measured sample, 

1n

)xx(
s

n

1i

2
j

2

−

−
=
∑

= .          (12) 

 
 
More Explanation for Equations 7, 9, and 11. 
 

                                                 
a See derivation of the factor (N+n-2k)/(Nn) at the end of Section C.12. 
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The last three terms in the square brackets in Equation 7 (i.e., those involving ur, us, and rr) are 
the propagated random, systematic, and round-off uncertainties for the mean value used in 
calculating T.   
 

The first term in the sum in the square brackets, N − n
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

sn
2 − ur

2

n
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , is the variance in the mean due 

to piece-to-piece variation.  Thus it is an estimate of uph
2. The observed variance is a result of 

both piece-to-piece variation and random errors in the measurement from various random 
influences.  The estimated squared standard deviation of these random errors, ur, is therefore 
subtracted from the observed variance of the measured pieces to obtain the piece-to-piece 
variation.  The value sn

2 – ur
2 is divided by n to estimate the variance of the mean value due to 

physical variation.  The factor (N-n)/N is the finite population correction (see Section C.12).  
Note that when the mean is the average of all N pieces used in the assembly, as in Cases 1 and 2, 
then n=N and N-n is zero and this uph term becomes zero.  
 
When multiplied by N2, the estimate of uph used in Equation 7 is consistent with Equation 12 in 
Section C.12, except for the subtraction of the random measurement error term 2

ru .  The 
subtraction of the random measurement error term is not necessary in Section C.12 because there 
it is assumed that each xi is know exactly (or, the measurement uncertainty is so small that it is 
insignificant).  Only when there is no appreciable measurement error does Equation 12 in Section 
C.12 provide an unbiased estimate of uph.  When the xi are measured with errors, sn

2 contains both 
the piece-to-piece variability (uph) and the random measurement error (ur).  So the random 
measurement error component must be subtracted out to get a result solely involving piece-to-
piece variation.   
 
Note that sn

2 is not used directly as a simple estimate of uph
2 + ur

2 because the finite population 
correction (N-n)/N applies only to true piece-to-piece variation component of sn

2, not to the 
measurement error.  However, when N is much larger than n, overestimating the finite-population 
correction slightly as 1 and using only sn

2/n for the first two terms is simpler and acceptible, as 
long as this uncertainty is not one that significantly affects the overall uncertainty of keff of the 
experiment.   
 
It should be noted that in many cases, the actual data needed to calculate sn

2 will not be available, 
rather sn

2 will be obtained from experiment reports or other sources, as will ur
2 and us

2.  Often the 
value of n, number of measurements, is not known.  In this case, the evaluator may choose to 
estimate n as a low reasonable value (e.g., 1 to 4) and s2/n may replace the uph and ur terms with 
likely small impact on the reliability of the uncertainty estimate. 
 
The differences between Equations 7, 9, and 11 are based on recognizing how many observations 
contributed to the calculation of the mean mass value used in the calculation of xNT = .  But the 
numbers in the first term in the brackets in Equations 7, 9, and 11 are further adjusted based on 
how many of the actually measured pieces are retained in the sample selected for use in the 
experiment, because the uncertainty is increased when not all the measured pieces are used in the 
assembly.  For example, if all the pieces are measured and also used in the assembly, then the 
variation between pieces has no effect on the uncertainty in the total.  However, if all the pieces 
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are measured and only a randomly selected subset is used in the assembly, then some uncertainty 
due to piece-to-piece variability is introduced even though every piece has been measured.  
 

C.10  Plutonium valency   
 

Chemists have known for a long time that in plutonium nitrate solution, the Pu valency state 
might not always be IV, which gives Pu(NO3)4.  The valence of plutonium depends on many 
conditions, including temperature, PH and acidity, particularly. Plutonium with valency III, 
forming Pu(NO3)3, which is generally a more reactive solution composition from a criticality 
viewpoint, may coexist with Pu IV.a  Moreover, other phenomena, such as radiolysis and 
polymerization, may contribute to the formation of this and other valency states.b  
 
A proposed method to determine the effect of the possible valency state III is to take as its 
possible fraction the same fraction as the NO3

- relative uncertainty, and then to calculate, by 
proportionality, the effect by changing all Pu IV to Pu III in the Pu nitrate solution. That is, for 
the Pu III calculation, assume that the molecular form of plutonium nitrate is Pu(NO3)3 and derive 
the remaining solution components, as usual, from the experimental data of the chemical analysis. 
The difference in keff results multiplied by the NO3

- relative-uncertainty fraction may be used as 
an estimate of the effect of Pu valency uncertainty. (See, for example, Section C.6 in  
PU-SOL-THERM-028.)  Until now, this type of calculation shows that the uncertainty effect is 
low. 
 

C.11  An estimate of systematic uncertainty  
 

A rough estimate of the order of magnitude of systematic uncertainty can be the scale interval of 
the measuring device.  
 
However, another basis of estimate of a value for systematic uncertainty comes from the 
following considerations:  Whenever a part used in an experimental assembly is made, the 
manufacturer works hard to ensure that the piece is within specifications.  How closely the part 
matches specifications will be carefully checked during its manufacture as well as during its 
certification or approval by the quality assurance department of the company or factory. Both 
machinists and certifying personnel strive to reduce error in the part. If it is assumed that reducing 
random and systematic error are approximately equally difficult and that the difficulties grow 
approximately as E-2, where “E” is the magnitude of the error, then it is easier and more 
economical for the manufacturers of the part (and also for manufacturers of measuring 
instruments) to approximately equally reduce both random and systematic error.  Therefore, in 
the absence of additional information, a reasonable estimate is that half of the accuracy provided 
by the manufacturer of the part (or measuring device) comes from possible systematic error and 
half comes from possible random error. Since these two types of uncertainty are combined 

                                                 
a O.J. Wick, ANS - Plutonium Handbook.A  Guide to the Technology, Vol 1, 1980, pp 403 – 439;  M. Benedict, T. 
Pigford,  H. Levi, Nuclear Chemical Engineering, MacGraw Hill, 1981. 

 
b H. K. Clark, Subcritical Limits for Plutonium Systems, Nuclear Science & Engineering, 79, p 65, 1981; H.C. Paxton and 
N.L. Pruvost, Critical Dimensions of Systems Containing 235U, 239Pu, and 233U, LA 10860 - rev 1986. 
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quadratically to obtain the total uncertainty, an estimate for systematic uncertainty is the stated 
accuracy divided by √2.  The same value is taken as an estimate for the random uncertainty. 
 
If many similar parts are used in the assembly, the effect of the random component of the 
uncertainty will be reduced (often by 1/√N, where N is the number of parts in the assembly), but 
the effect of the systematic component of the uncertainty of the part will not be so reduced. This 
also applies to the effect of systematic uncertainty in the measurements for all parts measured by 
the same device. 

 
C.12  Sampling uncertainty: Variance of the mean when sampling without  
           replacement from a finite population 
 

Basic uncertainty analysis assumes an infinite population of endlessly repeated measurements of 
the parameter value.  In practice we often deal with parameters (such as the mean, sum, standard 
deviations, etc. of mass, enrichment, dimensions, etc.) of finite populations of equivalent items, 
such as N fuel elements in a critical configuration.  When N is a large number of items carefully 
manufactured according to strict specifications (several hundred fuel elements is typical), it seems 
impractical to measure all N.  Using measurements of only n of the N fuel elements to estimate 
parameters for the entire population is an example of sampling without replacement.a  There is 
additional uncertainty from assuming that measurements of only part of the population apply to 
the entire population.   
 
This additional uncertainty from measuring only a sample rather than measuring the entire 
population is called the sampling uncertainty.  It is due to physical variation among members of 
the population.  If the manufacturing process was indeed tightly controlled and the measurements 
are accurate, this additional sampling uncertainty will be small. 
 
In the following discussion of sampling uncertainty, the random, systematic, and round-off 
uncertainties of the individual measurements are ignored, or are considered as so small that they 
are completely inconsequential.  However, the random, systematic, and round-off uncertainties 
are usually not negligible and should be included, as described in Section C.9. 
 
In the following discussion about using measured values of a sample to estimate population 
values (and vice versa), simple random sampling is assumed.  This means that each item of the 
population has an equal chance of being chosen for the sample.   
 
Let a population have a finite number N of elements with some quantity or characteristic X. Let 
x1, x2,…, xN be characteristic values of elements of this population with equal statistical weight. 
 
Parameters of the population are the following: 

population mean is  ∑
=

=
N

1i
iN

1
N,mean xX  (1) 

                                                 
a W. Cochran, Sampling Techniques, Wiley, New York, copyright 1953, Chapter 2.   
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population sum is  ∑
=

=
N

1i
iN,sum xX  (2) 

variance of the population is  SN
2 = 1

N−1 (xi − Xmean,N)2

i=1

N

∑   (3) 

 
Let n elements from this population be measured by sampling without replacement. (This name 
indicates that the measured element cannot be replaced to be measured a second time.  In this 
case, sample draws are not independent:  the first element is drawn from N elements, the second 
is drawn from N – 1 elements, and so on.) Values of the sample are the following: 

sample mean is  ∑
=

=
n

1i
in

1
n,mean xx  (4) 

sample sum is  ∑
=

=
n

1i
in,sum xx  (5) 

variance of the sample is  sn
2 = 1

n−1 (xi − xmean,n )2

i=1

n

∑ . (6) 

 
Using the measured values of the sample, one can estimate unbiased values of the mean, the sum, 
and the variance of the population.  The sampling method to estimate a population value “is 
unbiased if the average value of the estimate, taken over all possible samples of given size n, is 
exactly equal to the true population value.” a  Estimates (denoted below by ^) of parameters of 
the population are the following: 

unbiased estimate of the mean of the population,  ∑
=

==
n

1i
in

1
n,meanN,mean xxX̂  (7) 

unbiased estimate of the sum of the population,  ∑
=

×==
n

1i
in

1
n,meanN,sum xNNxX̂  (8) 

unbiased estimate of the variance of the population,b    ˆ S N
2 = sn

2 = 1
n−1 (xi − xmean,n )2

i=1

n

∑   (9) 

 
Note that the estimate of the variance of the population is simply (6), the variance of the sample. 

 
The uncertainty of using the sample mean xmean,n as an estimate of the population mean derives 
from the fact that the number of possible samples of size n drawn from a population of N is 

N!
n!(N − n)!

.  This creates a collection of N!
n!(N − n)!

 possible sample mean values that can occur.  

These different sample mean values form their own population, so the uncertainty of a sample 
mean value is the square root of the variance of this population of sample mean values.  The 
variance of the mean, defined as the expected value (“expectation”) of the squared difference 

                                                 
a Ibid., Sec 2.3, p. 14.  
b Ibid., Theorem 2.4, p. 18. 
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between the mean of the sample and the mean of the population, obtained by averaging over all 
possible samples of size n, is equal to a   
   

Smean,N,n
2 ≡ E xmean,n − Xmean,N( )2[ ]= N − n

N
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
SN

2

n
   (10) 

where SN
2 is defined by (3). 

 
Using (9) for the estimate of SN

2, an unbiased estimate of the variance of (7), the mean of the 
population obtained from the sample mean, is b   

 ˆ S mean,N,n
2 = N − n

N
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

sn
2

n
.      (11) 

 

Similarly, the unbiased estimate of Ssum,N,n
2 , the variance of (8), the sum of the population 

obtained from the sample mean, is c  

 ˆ S sum,N,n
2 = N2 N − n

N
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

sn
2

n
.     (12) 

 
Taking the square root of these variance estimates gives the additional uncertainty due to 
measuring only a sample of the population to obtain estimates of the population’s mean or sum.  
This result is used in Case 3 of Section C.9, where the uncertainty of the sum of pieces is derived. 
 

The factor N − n
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  is called the finite population correction.  Note that the factor is close to 1 

whenever N is very large compared to n, giving for equation (11) 
ˆ S mean,N,n

2 ≈ sn
2

n
      (13) 

This is the formula for the variance in the mean when sampling with replacement (in which case 
the sample draws are independent) from an infinite population. This is also the formula for 
variance of the measured value of a parameter obtained as the mean of n repeated measurements 
of it (which is a type of sampling with replacement from an infinite population).  
 
Of course, when all members of the population are measured (n = N), the sample mean and sum 
become identical, respectively, to the the population mean and sum.   Then the variances of the 
mean and of the sum are 0, as are their estimates (11) and (12), because they include the factor 
(N - n).   In this special case, there is, of course, no additional uncertainty from using the sample 
mean as an estimate of the population mean.  
 

                                                 
a Ibid., Theorem 2.2, p. 15. 
b Ibid., eqn. 2.18, p. 19. 
c Ibid., eqn. 2.19, p. 19. 
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Because the upper limit of  N − n
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  is 1, the effect of not using this correction factor and using, 

instead, only sn
2

n
 or SN

2

n
 is to overestimate the additional uncertainty from measuring only a 

fraction of the nominally equivalent items, or from using only a fraction of the measured items.  
 
Because of the symmetry of xmean,n and Xmean,N in (10), this variance of the mean also applies 
when the mean of a large population N’, obtained from measurements of all its members, is used 
to estimate the mean of an assembly of fewer items N that are randomly drawn from the 
population.   This is Case 4 of Section C.9.  The uncertainty is due to not knowing which 
members of the entire population were used in the assembly.  In this case, the result (10) is used 
directly as the variance of the mean value for the N items used in the assembly.  The unbiased 
estimate of the variance of the sum of the N items is then 

ˆ s sum,N,N'
2 = N2 N'−N

N'
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
SN'

2

N
     (14) 

 
For some experiments, a double sampling without replacement occurs.  This is Case 5 of Section 
C.9.  In the first step, a sample of n elements is drawn from the population of size N for the 
purpose of measurement.  After the measurements, the n elements are returned to the population. 
Then, another sample of size m to be used in the experiment is drawn from the population N.  If 
m < n, the N items may be totally, partially, or not at all from the set of n items measured.  If m > 
n, some or all elements used in the experiment are elements that were not measured.  Using the 
mean of measured elements as the mean of the assembly introduces additional uncertainty 
because these two sets are different.  Derivation of the additional uncertainty is given below. 
 
Derivationa of the additional uncertainty of the mean for Case 5 of Section C.9 
 
If the mean of sample n from a population N of nominally identical pieces is used to estimate the mean of 
m pieces for an assembly chosen randomly from the same population N, using the methods of Cochran,b 

the variance of the mean may be defined as   E xn − xm( )2⎡
⎣⎢

⎤
⎦⎥

,  

where E is the expectation, 

xn =
1
n

xi
i=1

n

∑ = mean of the measured sample, and 

xm =
1
m

xi
i=1

m

∑  = mean of pieces in the assembly. 

The mean is of some measured parameter, such as mass. 
 

                                                 
a Derived by V. F. Dean, October 2007. 
b Cochran, William G., Sampling Techniques, Modern Asia Edition, John Wiley & Sons, Inc., New York, 1966 (sixth 
printing). 
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To find E xn − xm( )2⎡
⎣⎢

⎤
⎦⎥

 first add and subtract Y =
1
N

xi
i=1

N

∑ , the mean of the whole population N.  Get 

  E xn − xm( )2⎡
⎣⎢

⎤
⎦⎥

 = E xn -Y( )− xm -Y( ){ }2⎡
⎣⎢

⎤
⎦⎥

                           = E xn -Y( )2
− 2 xn -Y( ) xm -Y( )+ xm -Y( )2⎡

⎣⎢
⎤
⎦⎥

 

          E xn - xm( )2⎡
⎣⎢

⎤
⎦⎥

= E xn - Y( )2⎡
⎣⎢

⎤
⎦⎥

- 2E xn - Y( ) xm - Y( )⎡
⎣

⎤
⎦ + E xm - Y( )2⎡

⎣⎢
⎤
⎦⎥

  (15) 

The variance of the N values xi of the population is S2 ≡
xi − Y( )2

i=1

N

∑
N − 1

. a 

The variance of the mean of the population, when xn  (the mean of n pieces sampled randomly from the 

population) is used to estimate  Y  (the mean of the population of N items), is defined as E xn -Y( )2⎡
⎣⎢

⎤
⎦⎥

. 

Theorem 2.2 of Cochran proves that E xn -Y( )2⎡
⎣⎢

⎤
⎦⎥
=

S2

n
N-n( )
N

. 

Theorem 2.4 of Cochran shows that an unbiased estimate of S2 is the variance of the sample, 

 
sn

2 ≡
xi − xn( )2

i=1

n

∑
n − 1

, where 
 
xn ≡

1
n

xi
i=1

n

∑ . 

 
So the first and third expectations in the last expression of Equation (15) are 

 E xn - Y( )2⎡
⎣⎢

⎤
⎦⎥

=
N - n
nN

s2   and    E xm - Y( )2⎡
⎣⎢

⎤
⎦⎥

=
N - m
mN

s2 . 

 

The middle expectation of Equation (15) is -2E xn -Y( ) xm -Y( )⎡
⎣

⎤
⎦ .  We need to derive the value of this 

expectation in order to find the variance of the mean of the m pieces, randomly drawn from population N and 
used in an assembly, when estimated by the mean of n pieces of another sample of n pieces randomly drawn 
from the same population. 

By the definition of the means,  xn and  xm , this middle term equals 
 

 
−2E

1
n

xi − Y( )
i=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
×

1
m

xi − Y( )
i=1

m

∑
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−2
mn

E xi − Y( )
i=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
⋅ xi − Y( )

i=1

m

∑
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. 

 

So now the task is to fine the average value (expectation) of xi − Y( )
i=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
⋅ xi − Y( )

i=1

m

∑
⎛

⎝⎜
⎞

⎠⎟
 over all possible 

samples from N of sizes m and n.   
 

                                                 
a Ibid., Equation 2.7. 
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Note that, when considering all possible samples, some, all, or none of the pieces of sample n can be the same 
pieces as those of sample m.  This is because the n measured pieces are replaced in population N before 
randomly choosing the m pieces to be used in the assembly, or vice versa.  Suppose that the number of same, 
or common, pieces in the two samples is k.  Then k ≤ m and k ≤ n.  That is, k is equal to or less than the 
smaller of m and n.  Also, of course, m ≤ N and n ≤ N.  Therefore, 
 

 
xi − Y( )

i=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
⋅ xi − Y( )

i=1

m

∑
⎛

⎝⎜
⎞

⎠⎟
= x1 − Y( )+ x2 − Y( )+ ... + xk − Y( )+ xk+1 − Y( )+ ... + xn − Y( )⎡⎣ ⎤⎦ ×  

 
x1 − Y( )+ x2 − Y( )+ ...+ xk − Y( )+ x 'k+1− Y( )+ ...+ x 'm − Y( )⎡⎣ ⎤⎦  

 
The primes remind us that  xa ≠ x 'a because only the k pieces are the same.   Also, abbreviate xi - Y( ) as Xi.  
So we have 

 
X1 + X2 + ...+ Xk + Xk+1 + ...+ Xn⎡⎣ ⎤⎦ ⋅ X1 + X2 + ...+ Xk + X'k+1+ ...+ X'm⎡⎣ ⎤⎦ . 

 
Doing the multiplication of terms gives 

 

xi − Y( )
i=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
⋅ xi − Y( )

i=1

m

∑
⎛

⎝⎜
⎞

⎠⎟
= Xi

2

i=1

k

∑ + Xi
i=1

k

∑ ⋅ X j
j=1
j≠ i

k

∑ + Xi
i=1

k

∑ ⋅ X'j
j=k+1

m

∑ + Xi
i=k+1

n

∑ ⋅ X j
j=1

k

∑ + Xi
i=k+1

n

∑ ⋅ X'j
j=k+1

m

∑

 
Now we need to find the expectations of these 5 terms, which together make up the middle expectation of 
Equation (15).  To do this, we average each of these sums over all possible samples of sizes n and m from N, 
so that we can get the result in terms of the population variance.  Then we can estimate the population variance 
by sn

2, the variance of the measured sample n, as mentioned previously. 
 
To do this we use the number-ratio proof a of Theorem 2.1 and Equations 2.10 and 2.11 of Cochran.b   
 
From Equation 2.10, by considering the ratio of number of terms on each side of the equation, the first of the 5 
expectations is 

E Xi
2

i=1

k

∑
⎡

⎣
⎢

⎤

⎦
⎥ =

k
N

Xi
2

i=1

N

∑  

 
From Equation 2.11, the same considerations give a value for the second of the 5 expectations: 

 

E Xi
i=1

k

∑ ⋅ X j
j=1,
j≠ i

k

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 2E Xi
i=1

k

∑ ⋅ X j
j= i+1

k

∑
⎡

⎣
⎢

⎤

⎦
⎥ =

2k k − 1)( )
N N − 1( ) Xi

i=1

N

∑ ⋅ X j
j= i+1

N

∑ . 

 

                                                 
a The number-ratio proof  is the following:  “Since every unit appears in the same number of samples [when averaging 
over all possible samples], it is clear that [the sums over the samples in left-hand side] must be some multiple of [the 
sums over the population in the right-hand side].  The multiplier must be [ts, number of terms in the left-hand side 
divided by TN, number of terms in the right-hand side], since the expression on the left has [ts] terms and the expression 
on the right has [TN] terms.”  (See Cochran, p. 15; it is true because all pieces of the sample have approximately the 
same value.) 
b Ibid., pp. 14-16. 
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Note that for this term, because the two sums Xi
i=1

k

∑ and X j
j=1,
j≠ i

k

∑ have the same k pieces in each, there are two 

individual terms equal to Xi ⋅ Xj with i ≠ j; for example, there is a X3 ⋅ X4 term as well as a X4 ⋅ X3 term.  As 

Cochran notes, the product 
 

Xi
i=1

k

∑ ⋅ X j
j= i+1

k

∑  has k(k-1)/2 terms, while the product Xi
i=1

N

∑ ⋅ X j
j= i+1

N

∑ has  

N(N-1)/2 terms.  So the ratio of the numbers of near-equal terms on each side is 
 

k k − 1)( )
N N − 1( ). 

For the third expectation term, 
 

Xi
i=1

k

∑ ⋅ X'j
j=k+1

m

∑  with k(m – k) separate terms and again using the number-ratio 

proof of Theorem 2.1, it must be that  

E Xi
i=1

k

∑ ⋅ X'j
j=k+1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥ =

2k(m − k)
N(N − 1)

Xi
i=1

N

∑ ⋅ X j
j= i+1

N

∑ . 

The 2 is here because the right hand side has N(N-1)/2 terms, so the ratio of number of terms in the left-hand 

side to the number of near-equivalent terms in the right-hand side is 
2k(m − k)
N(N − 1)

. 

 
Similarly,  

 
E Xi

i=k+1

n

∑ ⋅ X j
j=1

k

∑
⎡

⎣
⎢

⎤

⎦
⎥ =

2k(n − k)
N(N − 1)

Xi
i=1

N

∑ ⋅ X j
j= i+1

N

∑  

and 

 
E Xi

i=k+1

n

∑ ⋅ X'j
j=k+1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥ =

2(n − k)(m − k)
N(N − 1)

Xi
i=1

N

∑ ⋅ X j
j= i+1

N

∑ . 

 
Using the equalities established above, we obtain for the middle expectation of the right-hand side of  
Equation (15) the following: 
 

 

−2
mn

E xi − Y( )
i=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
⋅ xi − Y( )

i=1

m

∑
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 
=

−2
mn

k
N

xi − Y( )2

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪
 

 
+2

k(k − 1)
N(N − 1)

+
k(m − k)
N(N − 1)

+
k(n − k)
N(N − 1)

+
(n − k)(m − k)

N(N − 1)
⎡

⎣
⎢

⎤

⎦
⎥ × (xi − Y)

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥ × (x j − Y)

j= i+1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪
 

 
=

−2
mnN

k xi − Y( )2

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪
 

 
+ 2

k(k − 1+ m − k + n − k) + (n − k)(m − k)
N − 1

× xi − Y( )
i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥ × x j − Y( )

j= i+1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪
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=
−2

mnN
k xi − Y( )2

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪
 

 
+ 2

mk + nk − k2 − k + nm − nk − km + k2

N − 1
× xi − Y( )

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥ × x j − Y( )

j= i+1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪
 

 
=

−2
mnN

k xi − Y( )2

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪
+ 2

nm − k
N − 1

× xi − Y( )
i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥ × x j − Y( )

j= i+1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪
 

 
=

−2k
mnN

xi − Y( )2

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪
+ 2

nm − k
k N − 1( )× xi − Y( )

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥ × x j − Y( )

j= i+1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪
. 

 
Now, as Cochran does in his proof of Theorem 2.2, “complete the square on the cross-product term.”  The 
middle expectation of Equation (15) becomes 

 

−2
mn

E xi − Y( )
i=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
⋅ xi − Y( )

i=1

m

∑
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−2k
mnN

1−
nm − k

k(N − 1)
⎡

⎣
⎢

⎤

⎦
⎥ xi − Y( )2

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥ +

nm − k
k(N − 1)

xi − Y( )
i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Because 
 

xi − Y( )
i=1

N

∑  = 0, by the definition of Y , the last term on the right-hand side is zero. 

So 
 

−2
mn

E xi − Y( )
i=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
⋅ xi − Y( )

i=1

m

∑
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−2k
mnN

1−
nm − k

k(N − 1)
⎡

⎣
⎢

⎤

⎦
⎥ xi − Y( )2

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥ . 

 
Simplifying further and using the definition of S2, the variance of the population N, it equals 

 

−2k
mnN

kN − k − nm + k
k(N − 1)

⎡

⎣
⎢

⎤

⎦
⎥ xi − Y( )2

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥ =

−2
mnN

kN − nm
(N − 1)

⎡

⎣
⎢

⎤

⎦
⎥ xi − Y( )2

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥ =

−2 kN − nm( )
mnN

S2 . 

 
This is the value of the middle term in the right-hand side in the original expression, Equation (15), which is 
repeated here: 

  E xn - xm( )2⎡
⎣⎢

⎤
⎦⎥

= E xn - Y( )2⎡
⎣⎢

⎤
⎦⎥

- 2E xn - Y( ) xm - Y( )⎡
⎣

⎤
⎦ + E xm - Y( )2⎡

⎣⎢
⎤
⎦⎥

   (15) 

 
Therefore, using the values obtained for these 3 expectations in terms of the sample variance sn

2, which 
estimates the population variance S2, this becomes 

  E xn - xm( )2⎡
⎣⎢

⎤
⎦⎥

= 
N - n
nN

⎡
⎣⎢

⎤
⎦⎥

+ 2
mn - kN

mnN
⎡
⎣⎢

⎤
⎦⎥

+
N - m
mN

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

⋅ sn
2 . 

 

Simplifying further,   E xn - xm( )2⎡
⎣⎢

⎤
⎦⎥

= 
1

mnN
mN - mn + 2mn - 2kN + nN - mn[ ]⋅ sn

2 =
N(m + n - 2k)

mnN
⋅ sn

2  

or      E xn - xm( )2⎡
⎣⎢

⎤
⎦⎥

=
m + n - 2k

mn
⋅ sn

2 , 

where k is the number of pieces common to random samples m and n.  If k is the smaller of m and n (which is 
the largest possible value for k, and implies either that all measured pieces are in the assembly or that the 
whole assembly comprises measured pieces), this can be written as 
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  E xn - xm( )2⎡
⎣⎢

⎤
⎦⎥

=
m - n
mn

⋅ sn
2 =

1
min(m,n)

-
1

max(m,n)
⎛
⎝⎜

⎞
⎠⎟

⋅ sn
2 . 

 

Note, however, that the additional uncertainty will be proportional to the square root of   
m + n - 2k

mn
, which 

increases as k decreases.  
 
Usually, we do not know how many pieces are common to both samples.  Therefore, we must assume the 
worst case, which is the smallest possible value of k.   
 
For k = 0, indicating that there are no pieces common to samples n and m, the variance of the mean becomes 

  E xn - xm( )2⎡
⎣⎢

⎤
⎦⎥

=
m + n
mn

⋅ sn
2 =

1
n

+
1
m

⎛
⎝⎜

⎞
⎠⎟

⋅ sn
2 . 

 
However, if m + n > N, it is impossible that samples m and n have no common pieces.  In this case, the 
smallest possible k is m + n – N.  For this case, the expectation of the variance of the mean becomes 
 

  E xn - xm( )2⎡
⎣⎢

⎤
⎦⎥

=
m + n - 2(m + n - N)

mn
⋅ sn

2 =
2N - m - n

mn
⋅ sn

2 =
2N
mn

-
1
n

-
1
m

⎛
⎝⎜

⎞
⎠⎟

⋅ sn
2 . 

 
In summary, if the mean of m pieces used in an assembly is estimated by using the mean of a sample of n 
pieces of a larger population N, from which both assembly pieces and measured pieces were randomly taken, 

the variance of the mean is   E xn - xm( )2⎡
⎣⎢

⎤
⎦⎥

=
m + n - 2k

mn
⋅ sn

2 , where k is the number of pieces common to the 

assembly and measured sample, and sn
2 is the variance of the measured sample n.  If k is not known, the 

smallest possible k is assumed:   
k = 0, if m + n ≤ N, or  
k = m + n – N, if m + n > N. 
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APPENDIX D:  EXAMPLE OF EXPERIMENTAL-DESIGN METHODOLOGY 

 

LEU-COMP-THERM-052: 
 Uranium Dioxide (4.738%-Enriched) Fuel-Rod Arrays Moderated and Reflected by 

Gadolinium Nitrate Solution 
 
Critical experiments with 4.738%-enriched uranium dioxide rod arrays in a large water-filled tank 
were carried out in testing equipment called Apparatus B in the experimental criticality facility at the 
"Service de Recherches et d'Etudes en Criticité" in Valduc (C.E.A. France) in 1978.  Experiments 
were subcritical approaches extrapolated to critical, with the multiplication factor reached being very 
close to 1.000 (~0.99).  
 
The six configurations of the experimental program were: 
• either one hexagonal assembly of 1261 fuel rods (21 rods per side of the hexagon) 
• or one pseudo-cylindrical assembly of 1285 fuel rods (10 rods added on each side of the hexagon 

and 6 rods removed at each corner)  
Configurations were performed at three triangular pitches (1.35, 1.72 and 2.26 cm).  The array was 
moderated and reflected by a gadolinium nitrate solution.  The gadolinium concentration was  such 
that the solution critical height (between 87.5 and 89.6 cm) obtained by an extrapolation method 
covered most of the fissile column (90 cm). 
 
For this example, only Case 1 of LEU-COMP-THERM-052 will be treated, because of reference 
values varying from one case to the other.  This example of the experimental design method should 
be considered from a "mathematical" point of view.  "Physical" aspects are treated in  
LEU-COMP-THERM-052. 
 
In the original evaluation, many uncertainties are of Type B.  Later evaluations should include most 
recent statistical measurements giving therefore more uncertainties of Type A. 

D.1 Inventory of uncertainties 

D.1.1 Uncertainties on materials 
 
The uncertainties on materials should include at least the parameters listed in the following table 
(non-exhaustive list), in which the columns are filled, for clarification.  
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Parameter Identification 
(unit of measurement) 

Mean 
measured 

value 

Reported 
uncertainty

in 
parameter(a) 

Type of 
uncertainty 

(A or B) 

ν 
Number of 
degrees of 
freedom (b) 

Number of 
standard 

deviations 
associated 
with the 

uncertainty 

Standard 
uncertainty

235U Enrichment (wt.%) 4.738 0.004 A ∞ (c) 2 0.002 

Fuel Density  
(g/cm3 fuel rod) 

10.38 0.04 B ∞ 3 0.04/3 

Temperature (°C) 22.0 1 B ∞ none 1/√3 

Gadolinium Content (g/l) 
in solution 

0.6 3 % A unknown 2 3 % / 2 

 
(a) The uncertainty is usually reported with the same unit as quoted in the first column.  In a few cases, relative 

uncertainties are given, in %. 
(b) The number ν of degrees of freedom is equal to n-1 for a single quantity estimated by the arithmetic mean of n 

independent observations. 
(c) Actually, the number of measurements is unknown, but data indicates that many measurements were made; 

therefore, for practical purposes, it is assumed to be infinite.  (Value confirmed by 5 points of measurement.) 
 

The uncertainty in temperature will have an effect on water density and nuclear temperatures 
of isotopes.  
 

D.1.2 Uncertainties in geometry 
 

The uncertainties in geometry should include at least the parameters listed in the following 
table (non-exhaustive list), in which the columns are filled, for clarification. 

 
 

Parameter Identification 
(unit of measurement) 

Mean 
measured 

value 
or design 

value 

Reported 
uncertainty

in 
parameter(a)

Type of 
uncertainty 

(A or B) 

ν 
Number of 
degrees of 
freedom(b) 

Number of 
standard 

deviations 
associated 
with the 

uncertainty 

Standard 
uncertainty 

Fuel Pellet Radius (cm) 0.395 0.002 B ∞ 1 0.002 
Clad Outer Radius (cm) 0.470 

 
0.0025 B ∞ none 0.0025/√3 

Fuel-Rod Position (cm)  0.06 B 1260 1 0.06/√1261 
Solution Height (cm) 89.6 0.2 B(c) ∞ 3 0.2/3 
Fissile column height (cm) 89.6 1 B ∞ 3 1/3 

 
(a) The uncertainty is usually reported with the same unit as quoted in the first column.  In a few cases, relative 

uncertainties are given, in %. 
(b) ν → ∞.  See the discussion in Section 6.4 and in Sections G.4.2 and G.4.3 of Reference 1. 
(c) The parameter is taken as Type B, because it is the result of an average measurement by 5 counters for each 

experiment. 
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The fissile column height design value 90.0 is given as 90 ± 1 cm, where ± 1 cm is given as a 
tolerance by the manufacturer.  However, it is taken as 89.6, to give the possibility of running 
uncertainty calculations with positive or negative increments (because revising the model to 
heights greater than 90 cm is difficult).  Note that it is not necessary that the reference case 
exactly match the benchmark model; it is sufficient for parameters to only be close to the 
benchmark-model specifications. 
 

D.2 Estimation of uncertainties 
 

When experimental design is used as the method of determination of uncertainties, it is 
convenient to treat the parameters in groups such that within each group all parameters may be 
easily varied at the same time. 

D.2.1 Estimation of uncertainties in a first group of parameters by experimental- 
  design methodology 

 
The first group of parameters xi , which will vary at the same time includes 
x1  =   235U Enrichment (wt.%)  
x2  =   Fuel Density  (g/cm3 fuel rod) 
x3  =   Fuel Pellet Radius (cm) 
x4  =   Clad Outer Radius (cm) 
 
The parameters’ variations in calculations will be, respectively, 0.01, 0.04, 0.001, 0.001.  Nine 
simulations with simultaneous changes in parameters are run.  The 9th calculation corresponds to 
the reference configuration. 
 

calculation       
n° x1 x2 x3 x4 keff delta keff 
      x 105 

1 4.728 10.34 0.394 0.469 0.998 -169 
2 4.748 10.34 0.394 0.471 0.9983 -139 
3 4.728 10.42 0.394 0.471 0.99855 -114 
4 4.748 10.42 0.394 0.469 1.00054 85 
5 4.728 10.34 0.396 0.471 0.9991 -59 
6 4.748 10.34 0.396 0.469 1.00111 142 
7 4.728 10.42 0.396 0.469 1.00135 166 
8 4.748 10.42 0.396 0.471 1.00162 193 
9 4.738 10.38 0.395 0.470 0.99969 0 

 
By linear regression from these calculations, we obtain a first order development for the keff 
variation: 
 

( ) ( ) ( ) ( )
001.0

470.0x
875.42

001.0
395.0x

375.97
04.0

38.10x
375.69

01.0
738.4x

125.57125.1310k 43215
eff

−
−

−
+

−
+

−
+=×Δ  
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The first term, 13.125 pcm, is a residual term, which should be as low as possible, its value being 
small when it is compared with the total variation due to the four parameter changes. 
For each parameter change, it is possible to compute the effect on keff. 
For instance, Δkeff [235U Enrichment (wt.%)] = 57.125 (0.002/0.01) 10-5 = 11×10-5 
 

Parameter 

Parameter 
Variation 

in 
Calculation 

Δkeff 
x 105 

Parameter  
Experimental

Standard 
Deviation 

Δkeff 
x 105 

x1 0.01 57 0.002 11 
x2 0.04 69 0.01333 23 
x3 0.001 97 0.001 97 
x4 0.001 -43 0.00072 -31 

 
 

D.2.2 Estimation of uncertainties on a second group of parameters by experimental- 
  design 

 
The second group of parameters xi, which will vary at the same time includes 
x1  =   Solution Height (cm) 
x2  =   Fissile Column H  eight (cm) 
 
The parameter variations in calculations will be the same: 0.4 cm.  Five simulations with 
simultaneous changes in parameters are run, and the 5th calculation corresponds to the reference 
configuration. 
 

calculation     
n° x1 x2 keff delta keff 
    x 105 

1 89.2 89.2 0.99937 -32 
2 90 89.2 0.99984 15 
3 89.2 90 0.99953 -16 
4 90 90 0.99985 16 
5 89.6 89.6 0.99969 0 

 
By linear regression from these calculations, we obtain a first order development for the keff 
variation: 
 

( ) ( ) ( ) ( )
4.0

6.89x
4.0

6.89x
75.3

4.0
6.89x

25.4
4.0

6.89x
75.1925.410k 21215

eff
−

×
−

−
−

+
−

+−=×Δ   

 
The first term, -4.25 pcm, is a residual term, which should be as low as possible, its value being 
small when it is compared with the total variation due to the two parameter changes. 
 
The cross-term (x1×x2) is introduced in order to take into account the correlation between 
parameters x1 and x2.  In Section D.2.1, when using the fitted polynomial expression to rebuild 
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the delta keff values, the agreement between the calculated values and the rebuilt values was 
excellent (within 1×10-5), so that it was inferred that there was no correlation between 
parameters. 
 
For each parameter change, it is possible to compute the effect on keff. 
 

Parameter 

Parameter 
Variation 

in 
Calculation 

Δkeff 
x 105 

Parameter  
Experimental

Standard 
Deviation 

Δkeff 
x 105 

x1 0.04 20 0.06667 3 
x2 0.04 4 0.33333 4 

x1×x2 0.04x0.04 4 0.02222 -0.5 
 
The last interaction term is not taken into account, since it is too small. 
 

D.2.3 Estimation of uncertainties on a last group of parameters by direct calculations 
 
The third group of parameters xi is investigated independently, by direct calculations, as usual: 
x1  =  Temperature (°C) 
x2  =  Fuel-Rod Position (cm) 
x3  =  Gadolinium Content (g/l) in solution 
 
 

Parameter 

Parameter 
Variation 

in 
Calculation 

Δkeff 
x 105 

Parameter  
Experimental

Standard 
Deviation 

Δkeff 
x 105 

x1 3 24 1/√3 5 
x2 0.06 174 0.06/√1261 5 
x3 -4.5 % 597 3 %/2 199 

 

D.2.4 Estimation of the combined uncertainty 
 
All values of uncertainties (1σ) corresponding to the parameters changes are reported in the 
following table, which corresponds to Table 8 of LEU-COMP-THERM-052. 
 



Guide to the Expression of Uncertainties for the Evaluation of Critical Experiments 
 
 
 

         Revision:  5 
  Page 85 of 94   Date:  September 30, 2008 

Case Pitch 
(cm) 

Parameter Identification 
(unit of measurement) 

Parameter 
Variation 

in 
Calculation 

Calculated 
Effect, 
Δkeff × 

105 
 

Parameter 
Reported 

Uncertainty 

Parameter 
Experimental  

Standard 
Deviation 

Δk Effect of 
Standard 

Uncertainty 
× 105 

 
 
 

1 

 
 
 

1.35 

 

235U Enrichment (wt.%) 
Fuel Density (g/cm3) 
Fuel Radius (cm) 
Clad Outer Radius (cm) 
Temperature (°C) 
Fuel-Rod Position (cm) 
Gadolinium Content (g/l)  
Solution  Height (cm) 
Fissile column height (cm) 

 
0.010(a) 

0.04  
0.002  
0.002 

3 
0.06 

-4.5 % 
0.4 
0.4 

 
57 
69 
97 
-43 
24 

174 
597 
20 
4 

 
0.004 
0.04  

0.002  
0.0025(b) 

1(c) 
0.06 (d) 

3 % 
0.2 
1 

 
0.004/2 
0.04/3 
0.002  

0.0025 /√3 
1(c) /√3 

0.06/√1261 
3 %/2 
0.2 /3 
1 /3 

 
11 
23 
97 
31 
5 
5 

199 
3 
4 

  Quadrature sum     225 

 
(a) When changing the 235U enrichment, the 238U concentration was changed correspondingly to maintain constant 

mass of uranium. 
(b) Assumed uncertainty taken as half uncertainty of clad thickness. 
(c) Measurement uncertainty is ± 1 °C; measured temperature is 22 °C, except Case 4 where it is 23 °C.  Both 

solution density and cross sections were changed by amounts corresponding to 3 degrees to calculate this effect. 
(d) Maximum displacement allowed by diametral gap between grid hole and fuel pin clad is ± 0.03 cm.  Uncertainty 

on fuel pin center-hole position is ± 0.05 cm.  The total uncertainty on fuel-rod positioning was given by the 
quadratic sum 22 05.003.0 + and the keff variation was divided by Ν , where N is the number of fuel rods. 

 

The gadolinium content is the parameter that contributes most to the experimental uncertainty.  It is 
very easy to find its contribution by one-variable-at-a-time strategy.  Using the experimental design 
method would certainly improve the variance of the result.  However, the choice of a parameter 
family for gadolinium concentration is not obvious, and there could be a masking effect between this 
major contributor and other minor contributors to uncertainty. 
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APPENDIX E:  UNCERTAINTIES CALCULATED FOR LEU-COMP-THERM-040 
Four 4.738-wt.%-Enriched Uranium Dioxide Rod Assemblies  

Contained in Borated Stainless Steel or Boral Square Canisters,  
Water Moderated and Reflected by Lead or Steel 

 
The following table gives a comparison of calculations performed by three methods: 

• two independent Monte Carlo calculations (σ = 33 × 10-5), in which the parameter change was 
the experimental standard deviation multiplied by 5, and the results were divided by the same 
factor 5; 

• 19 Monte Carlo calculations to find by experimental-design methodology five parameter 
uncertainties:  the four listed in the table, and the temperature showing no effect; 

• two independent calculations (σ = 33 × 10-5) using a perturbation model in the Monte Carlo 
code; in fact, the standard deviation associated with the result in this case is 1×10-5. 

In the three types of Monte Carlo calculations, the associated standard deviations are, respectively, 

• 525 109
25
133210 −− ×=×   

• 5
2

5 102
25
1

19
3310 −− ×=  

• 5101 −×  
 
Using the experimental design methodology reduces the value of the standard deviation by a factor of 
√19, in this case. 
 

Case 
Valduc 

Reference 
No. 

Parameter Identification 
(unit of measurement) 

Parameter 
Nominal 

Value 

Experimental 
Standard 
Deviation 
Used for 

Parameter 

Δkeff × 105 

from 
2 

independent 
calculations 

Δkeff × 105 

from 
experimental

design 

Δkeff × 105

from 
perturbation

model 

 
1 

 
1983 

 

235U Enrichment (wt.%) 
Fuel Density (g/cm3) 
Fuel Radius (cm) 
Clad Outer Radius (cm) 

 
4.738 
10.38  
0.395 
0.47 

 
0.004 
0.04 
0.002  
0.002 

 
45 
68 
98 
39 

 

 
38 
70 
92 
34 

 
50 
72 
87 
49 
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APPENDIX F:  ROUNDING EXPERIMENTAL DATAa 
 

F.1 Recommended practice 
 

The standard deviation and the measured value of the measurand are equally important when we 
use interval estimates, i.e., confidence intervals.  In spite of this, the standard deviation is 
frequently specified only with one digit – saying that “the digits within the experimental 
uncertainty are not interesting anyhow.”  This is accompanied by rounding the value of the 
measurand also in the same way.  For example, the criticized practice consists of specifying 

  60 ± 5  instead of 58.72 ± 4.63, 
or 

  59 ± 2  instead of 58.72 ± 1.52. 

This kind of easygoing approach can have serious consequences for those who try to use 
experimental data.  Below, are arguments in favor of the following simple practice: 

 

(1) Give the standard deviation with at least two digits. 
(2) The decimal place of the last digit of the measurand should be the same as that of the 

standard deviation. 
 

For example, data like 

58.72 ± 4.63  or  58.7 ± 4.6 

can be recommended, but data like 59 ± 5 should be avoided.  The first argument will be trivial 
while the second one will be based on some mathematical analysis. 

F.2 Trivial arguments 
Let us consider the following simple example, which might appear extreme but is instructive. 
Assume that we have two measured values of the same measurand: x1 = 1.02 and x2 = 3.14 whose 
standard deviations are 

s1 = 1.49 and s2 = 1.51,  
respectively.b  It is simple to see that there is no significant difference between the measured 
values.  Thus, their weighted average can be used for estimating their common true value:  2.06 ±
 1.06.  Let us now round the standard deviations to one digit: 

s’1 = 1    and s’2 = 2 .   
Before rounding, the weights were practically equal: 

4504.0s1w 2
11 ==  and 4444.0s1w 2

22 == ,  

                                                 
a Contributed by Zoltán Szatmáry, Technical University of Budapest, Hungary. 
b This is an artificial case presented in order to amplify the effects of rounding. In the usual cases, the problems are less 
awkward but their effects are rarely negligible. 
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while, after rounding, their ratio became 4 to 1.  The weighted average based on the latter is:  
1.44 ± 1.12.  The deviation of the two averages is  

 
2.06 – 1.44 = 0.62 

which is of the same order of magnitude as the standard deviations.  It was completely 
superfluous to introduce such an error by rounding.  According to the approach criticized above, 
one need not pay attention to errors that are comparable to the standard deviations.  Few things 
are less true than this because the incorrect rounding can change the interval estimates 
dramatically. 
 
In the case of a Gaussian distribution, the quantile is γG = 1.96 for a confidence level of 95%.  We 
shall take γG ≈ 2 in the following.  For s1 = 1.49, the half length of the confidence interval (i.e., 
the experimental uncertainty) is 3 while it is roughly 2 if s1 is rounded to s’1 = 1.  With the better 
standard deviation (i.e., s1), the uncertainty of 2 means that the quantile was arbitrarily reduced to 

γ = γG⋅2/3 = 1.33, 

which corresponds to a confidence probability of 82%.  The statistical tests based on the rounded 
values became thus biased; that is, we think that we work with 95% but the actual confidence 
level is only 82%.  This is an important difference. 
 
We conclude that excessive rounding can make statistical analyses misleading.  It may happen 
that good theories will be rejected just because we neglected to specify one digit more.  Of 
course, the opposite can also happen.  Incorrect theories might be confirmed for the same reason. 

F.3 Probabilistic arguments 
Let us now study, quantitatively, what is the minimum number of digits to be specified.  Let ξ be 
the difference between the experimental value of the measurand and its true value, and let σ be its 
standard deviation.  The interval estimates (i.e., the confidence intervals) are based on the γ 
quantile defined by the equation 

{ }P ξ γσ ε< = −1  (1) 

where (1 – ε) is the confidence level (99%, 95%, etc.).  When the measured value is rounded, a 
particular value, r, of a uniformly distributed random variable is added to ξ.a  This means that the 
quantile γ ought to be calculated from the equation 

{ }P ξ γσ ε+ < = −r 1 . (2) 

Introduce the following notation: 

( ) { }Φ x x= <P ξ   
leading to 

{ } ( ) ( )P ξ < = − −x x xΦ Φ .  
Similarly, denote 

                                                 
a This model of the rounding is borrowed from the theory of quantizing random processes. It is only an approximation. 
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( ) { }F rγ ξ γσ= + <P   
leading to 

{ } ( ) ( )P ξ γσ γ γ+ < = − −r F F .  
If the range of r is Θ, we may write: 

( ) { } ( ) ( )F r r r r r r rγ ξ γσ γσ
γσ

γσ
= + <∫ = −∫ = ∫

− − −

+
P d d d

Θ
Φ

Θ
Φ

ΘΘ

Θ

Θ

Θ

Θ

Θ

2

2

2

2

2

2
.  

Assume, as an example, that ξ is a Gaussian random variable.  Then 

( )Φ x x= + ⎛
⎝⎜

⎞
⎠⎟

1
2

1
2 2

erf
σ

,  

where 

( )erf dz e tt
z

= −∫
2 2

0π
.  

The integral can be simply calculated leading to 

{ }1− = + < =ε ξ γσP r   

( )
= + +⎛

⎝⎜
⎞
⎠⎟

+ −
+⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−γσ γσ
σ

σ γσ
σ

Θ
Θ

Θ
Θ

Θ/ / exp
/2 2

2
2

2
2

2

2

2erf
π

 
 

( )− − −⎛
⎝⎜

⎞
⎠⎟

− −
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

γσ γσ
σ

σ γσ
σ

Θ
Θ

Θ
Θ

Θ/ / exp
/2 2

2
2

2
2

2

2

2erf
π

. (3) 

It can be seen that this depends only on the ratio Θ/σ (of course, in addition to γ).  Equation 3 can 
now be applied in two ways: 

1. Equation 3 can be solved for γ  for any given value of ε and Θ/σ.  This quantile allows 
constructing correct confidence intervals that take into account the fact that the measurand was 
rounded.  This γ quantile will be greater than the γG quantile belonging to the Gaussian 
distribution.  Thus, the correct confidence interval is broader than the Gaussian one.  We can 
put this also in the following form: the experimental uncertainty increases when the 
measurand is rounded.  We usually never take this into account: we use the Gaussian quantile 
γG, which is correct if and only if there is no rounding.  Therefore, it is advisable to choose 
such a rounding range θ for which the difference between γ and γG is negligible.  Figure F.1 
shows the percentage difference between quantiles γ and γG as a function of Θ/σ.  It can be 
seen that the difference is negligible when Θ/σ is less than 0.1. 

2. When we neglect the consequences of rounding, we use the Gaussian quantile γG for 
constructing the confidence interval.  Due to rounding, this corresponds in fact to another 
confidence level: 

{ }P ξ γ σ ε+ < = − ′r G 1  (4) 
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where the left hand side is given by Equation 3.  Figure F.1 presents the difference between ε 
and ε′, too.  It can be seen that the difference is negligible again when Θ/σ is less than 0.1. 
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Figure F.1.  Percentage difference between quantiles γ and γG as well as (1–ε) and 

the (1–ε′) given by Equation 4 for various values of Θ/σ. (ε = 0.05.) 

 

Our final conclusion is that the rounding range θ may not be more than one tenth of the standard 
deviation σ.  Rounding to the first digit would correspond to θ ≈ σ.  In plain words: the 
measurand may be rounded only up to the second digit of s.  This was our recommendation 
formulated above.  We make this clear by means of our former example where s = 4.63.  Our 
conclusion was that θ should be less than σ/10 ≈ 0.5.  The simplest way of realizing such a 
rounding is to round the measurand to its 0.1 digit: we write 58.7 instead of 58.72.  It follows 
from our analysis that we are surely on the safe side since this rounding will not distort 
confidence intervals. 

F.4 Rounding the standard deviation 
Let us now turn to the rounding of the standard deviation.  One intuitively feels that s should be 
rounded in the same way as the measurand itself, i.e., we write s = 4.6 instead of s = 4.63 if the 
measured value 58.72 was rounded to 58.7.  In order to make the reasoning less heuristic, let us 
model the rounding of s (measured value that estimates σ) in the same way as we did with the 
measurand.  We have then instead of Equation 2: 

( ){ }P ξ γ σ ε< + = −r 1 . (5) 

We assume for simplicity that the measurand is not rounded.a It is not necessary to repeat the 
derivations made above because it can simply be seen that Equation 3 is applicable if θ is 
replaced by γθ in it.  This means that the curves shown in Figure F.1 are now plotted as functions 
of γθ/σ.  Consequently, this latter quantity should be less than 0.1, which sets a more severe 
requirement on the rounding range θ than in case of the measurand. 
 
Let us consider some numerical examples.  For a confidence level of 95%, the Gaussian quantile 
is γG = 1.96.  When Equation 5 is solved for ε = 0.05, the resulting γ quantile will be more.  

                                                 
a We return to this point later. 
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Therefore, γ ≈ 2 is a sound underestimation.  We have concluded above that γθ/σ < 0.1.  It 
follows from this that θ should be less than σ/(10γ).  In the former example, this sets the 
following condition: θ < 0.25 meaning that σ should be rounded to the 0.1 digit as we stated 
heuristically. 
 
If we let σ go through an order of magnitude, the upper limit for θ changes also an order of 
magnitude.  For example, for 10 < σ < 100, we get from the above considerations that 
0.5 < θmax < 5.  This means that σ should be rounded to the last digit before the decimal point.  
For the order of magnitude considered, this requires keeping two valuable digits.  Of course, this 
conclusion is general, it does not depend on the order of magnitude (i.e., 10 < σ < 100) chosen as 
a numerical example. 
 
It is noted finally that rounding is delicate when σ ≈ 10 because the upper limit of θ is 0.5 for γ 
= 2.  If we want to keep our results applicable for higher values of the quantile, too, a two-digit 
rounding may be poor accuracy.  For example, for a confidence level of 99.73%, the Gaussian 
quantile is γG = 3 (the “3σ uncertainty” as it is frequently called), which leads to and upper limit 
of θmax = 0.33 requiring rounding to the 0.1 digit.  Therefore, we prefer, for example, rounding 
σ = 10.452 to 10.5 rather than to 10.  Due to statistical uncertainties of estimating the standard 
deviation, a value like σ = 9.752 could have occurred with the same probability.  It is naturally 
rounded to 9.8, i.e., to the same digit.  This approach assures that the last digit is the same for 
10 < σ as for σ > 10 when σ ≈ 10.  If, on the contrary, σ = 10.452 is rounded to 10 (as to “two 
valuable digits”) while σ = 9.752 is rounded to 9.8 (again as to “two valuable digits”), this causes 
an abrupt change in the rounded last digit when σ goes through 10.  Such an approach is not only 
inconsistent but it is also a nasty treatment of the experimental data. 
 
It is a natural question when this exceptional three-digit rounding of σ can be recommended.  In 
our practice, this is the interval 10 < σ < 20 (according to the former numerical example).  The 
reason is that 0.5 < θmax < 1 for this range of σ. 
 
We ought to analyze the general case when both the measurand and the standard deviation are 
rounded.  This would require the study of the following equation: 

( ){ }P ξ γ σ ε+ < + = −r r1 2 1  (6) 

 
where r1 and r2 are statistically independent random variables uniformly distributed in the range 
(–θ/2, θ/2).a We do not go into the details of this because of mathematical complications.  It is 
trivial that the resulting γ values would be more than those presented in Figure F.1, which leads to 
increasing the severity of the condition set for θ.  It is not necessary to perform the rather 
complicate analysis of Equation 6 because there is a simple way of making plausible that our 
final conclusion remains valid. 
 

                                                 
a According to our recommendations, the rounded digit is the same for the measurand as for the standard deviation. 
That is why the range (θ) is the same for r1 and r2. 
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The variance of r1 is θ 2 12 .  The total variance of (ξ + r1) is thus σ θ2 2 12+ .  Since θ is less 
than σ/10, the latter can not be more than 

  
( )σ
σ

σ2
2

210
12

100083+ = .  

which may be taken equal to σ2 in a very good approximation.  Therefore, our reasoning 
concerning the rounding of σ remains applicable. 



Guide to the Expression of Uncertainties for the Evaluation of Critical Experiments 
 
 
 

         Revision:  5 
  Page 93 of 94   Date:  September 30, 2008 

APPENDIX G:  DERIVATION OF THE STANDARD UNCERTAINTY AND LEVEL OF 
CONFIDENCE FOR A UNIFORM DISTRIBUTION 

 
 
The main purpose of this appendix is to show how level of confidence and standard deviation can be 
derived from any given probability distribution, using a uniform (flat) distribution as an example. 
 
For an assumed uniform probability distribution of possible values of a parameter x between bounds 
μ-a and μ+a (the mean value of x is μ), the standard deviation σ is a/√3.  This can be derived by 
considering the following: 
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Figure G.1.   Probability Density Function p(x) for Variable x, 
Assumed to Be Uniformly Distributed between μ-a and μ+a. 

 
 
In order for the total probability over the interval to be 1, the constant value of the uniform 
probability density is 1/2a from μ-a to μ+a and is zero elsewhere.  The variance is therefore 
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To perform the integration, change variables:  Let y = x - μ ;   dy = dx.  Then 
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Note that the level of confidence that the variable is between μ-σ and μ+σ is not the same for a 
uniform probability distribution as for a normal probability distribution.  For a normal distribution 
the level of confidence that the variable is between μ-σ and μ+σ is 0.683.  However, for a uniform 
distribution, the level of confidence is (making the substitution y  = x - μ) 
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