

INNOVATIONS IN GEN III DESIGNS & MODERNISATION OF EXISTING NPP — AN OPERATOR'S POINT OF VIEW

OECD/NEA workshop on Innovations in Water-cooled

Reactor Technologies – February 11-12, 2015

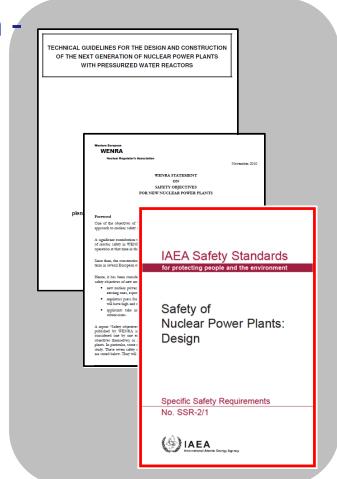
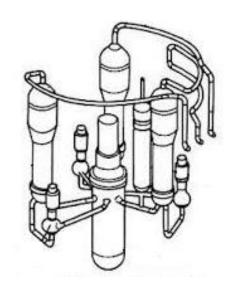

Frank Bertels

TABLE OF CONTENT

- Generation III / III+
 - Origin
 - Operator needs
- Generation II Safety Improvements
 - Changing regulatory framework
 - NPP commissioned in the 70ies
 - Reasonably practical safety improvements


Origin

- Europe Technical guidelines for the next generation -Groupe Permanent chargé des réacteurs nucléaires
 - Significant Safety Improvement → Early & Large Releases practically eliminated
 - Design basis considers Multiple Failure & Severe Accident
 - Probabilistic Safety Assessment analysis used for PIE definition
 - Evolutionary designs
- WENRA safety objectives for new NPP designs
 - Design Extension Conditions
 - Defense in Depth
 - Waste Management: reduce as far as reasonably achievable
- IAEA Specific Safety Requirements 2/1

Origin

- USA Single Combined Construction and Operating License (COL)
 - Improve Licensing Process Efficiency, Predictability
 - Reduces Financial Risk
 - COL Granted Prior To Beginning Of Construction
 - Cf. Generic Design Assessment process in UK
 - → Standardization: NSSS → Nuclear Island or complete plant
- EUR European Utility Requirements (US URD)
 - Focus on Safety, Competitivity and Operational aspects

Origin

Reactors with Active Safeguards

Reactors with Passive Safeguards

VVER AES92 System 80+ **AP1000 PWR URD APWR EPR EUR ABWR ESBWR BWR** (EU) **SWR1000**

SCOTLAND

Chapelcross

Sellafield

(Heysham

Hunterston

(Hartlepool

GENERATION III/III+

Operator needs


No distinct difference between passive and active designs

Hybrid plant designs

Not the main concern of the future operator

Nor evolutionnary design nor passive design present a dominating advantage in Safety Case discussions and permitting

- E.g: UK Generic Design Assessment of EPR and AP1000 RELAND
- Safety Case is not the only concern of the future operator
- Operational comfort and economical margin

Operator needs

- Return of experience of new plant design missing at this moment
 - Less uncertainty in evolutionary designs
 - Revolutionary designs offer opportunity to simplify operations: decrease (classified) equipment
 - Revolutionary designs need to confirm
 - Impact of simplification on operational comfort
 - Reduced maintenance efforts
 - Robustness/flexibility of active safeguards

GENERATION II

Plant Improvement

Processes

- Periodic Safety Review
 - WENRA Reference Level as a guideline
 - Continuous process
- Safety Improvements in the Life Time Extension framework
 - Large and/or small scale projects
 - Important investment budgets justified by improved cost/benefit balance
 - License renewal used by authorities as a lever to impose new regulation or solve long lasting discussions
- Non-planned additional Safety Review
 - Stress tests

Changing regulatory framework

- Generic developments
 - WENRA, IAEA: guides
 - New Built guides -> existing plants through Periodic Safety Review or directly imposed.
- Local rulemaking details, provides interpretation, might go further
 - Belgium
 - WENRA Reference Levels endorsed in Royal Decree in 2011
 - New legislation with new absolute release requirements will be issued beginning February 2015
 - Sweden
 - SKIFS 2004:2 / SSMFS 2008:17: New rulemaking for the design and construction
 - Independent Core Cooling Systems requirements 2014: need for new DiD level with fixed systems
 - France

- Slovenia

DUR, SAM efforts

New bunker necessary

NPP commissioned in the 70ies

Main challenges

- PIE extension from LBLOCA to current Design Basis Conditions
- Physical separation
- Qualification / classification of supporting functions
- Extension of hazard probability ranges

Non standardised plants

- NSSS + Large BOP scope
- Limited number of Nuclear Codes, Standards and Guidelines
- Local Engineering Companies

→ Non standardised Plant Improvements

NPP commissioned in the 70ies

Additional bunker/annex buildings

- Doel 1/2, Tihange 1, Borssele, Beznau, Ringhals 1
- Building not on critical path Continuous operation to be guaranteed
- Increased robustness
- I&C integration during prolonged outage
- Complexity added by layout constraints

Modifications in existing buildings

- Use of common equipment between DiD levels
- Important layout constraints
- Margin assessment of robustness

Limits of Safety Improvements

- Layout limits of reactor building and auxiliary building
 - Physical separation safeguard trains
 - Reactor cavity: Ex-vessel corium coolability in case of limited spreading area
- Changing state of the art
 - E.g. Filtered Containment Venting System
- Safeguard systems
 - Number of Electrical and hydraulic trains
 - Common header systems
- Generation II plants commissioned in '70 <-> '80

Reasonably practical safety improvements

- Considerable efforts done
 - PIE GENIII → GENII
 - LOCA -> DBC -> DEC
 - Severe accidents: large and early releases avoided
 - Acceptance Case by Case
- Return on investment not always possible
- Technical limits: Generation III is a target, not an acceptance criterion