APR1400 Safe, Reliable Technology

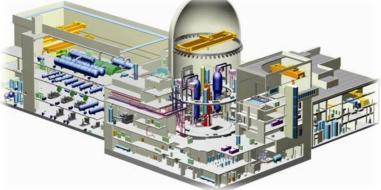
OECD/NEA Workshop on Innovations in Water-cooled Reactor Technology

Paris, Feb 11 – 12, 2015

Presented by Shin Whan Kim

Contents

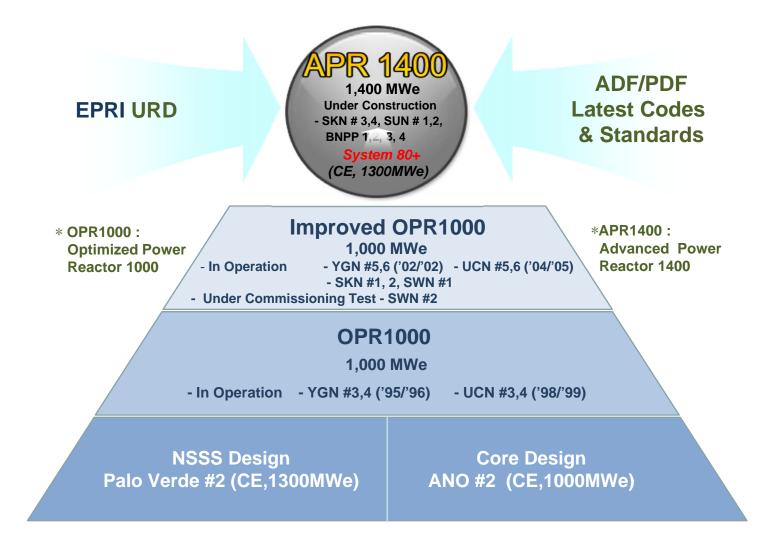
- 1. Introduction
- 2. Major Safety Design Characteristics
- 3. Summary


1. Introduction

- Technology Overview
- APR1400 Development
- Evolutionary Technology Development
- Design Goals

Evolutionary Advanced Light Water Reactor Technology

- Offering significant advances in safety and economics
- Design addresses the expectation of utilities for ALWR
- Design complies with up-to-date regulatory requirements of Korea and US and IAEA requirements
- Severe accident mitigation design features
- Eight units, four in Korea and another four in the UAE, currently under construction



APR1400 Development

Strategy

- Design adopting evolutionary improvement strategy based on proven standard/reference design
- Incorporate advanced design features to enhance safety and operational flexibility
- **Optimize design for economic improvement**
- Compliance with the Utility Design Requirements (domestic & world-wide)
 - Proven Technology
 - Constructability
 - Regulatory Stabilization
 - Maintainability

Design Goals

□ Safety

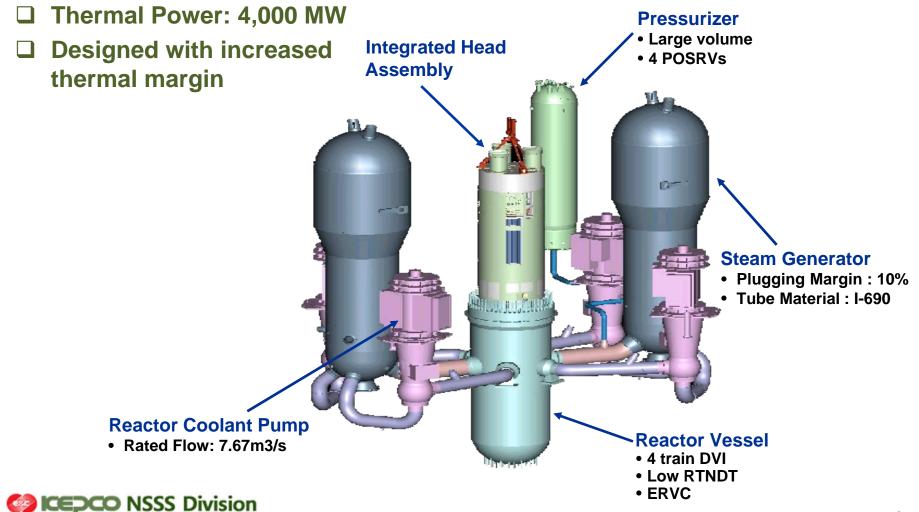
- Core Damage Frequency < 10E⁻⁵/RY
- Containment Failure Frequency < 10E⁻⁶/RY
- Seismic Design Basis : 0.3 g
- Occupational radiation exposure < 1 man·Sv/RY

Performance

- Thermal Margin > 10 %
- Plant Availability > 90 %
- Unplanned Trip < 0.8/RY

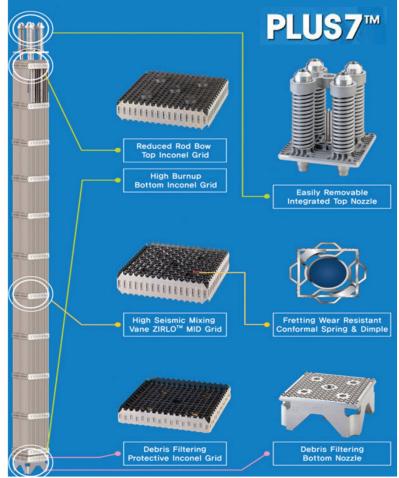
Economy

- Plant Capacity (Gross) : 1,455 MW_e
- Plant Lifetime : 60 years
- Refueling Cycle : ≥ 18 months
- Construction Period : 48 months (N-th Unit)


2. Major Safety Design Characteristics

- Improved Thermal Margin
- Advanced Fuel Technology
- Enhanced Reliability of Safety Systems
- Digital I&C System
- Severe Accident Mitigation
- Protection Against External Hazards

Improved Thermal Margin


Reactor Coolant System

Advanced Fuel Technology

Major Improvement

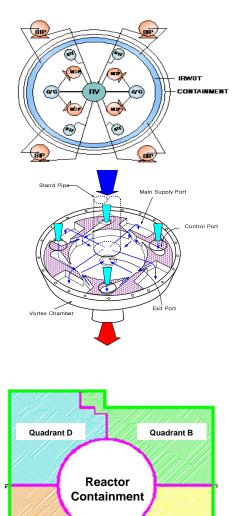
- Increased thermal margin of larger than 10 %
- □ High burnup of 55,000 MWD/MTU
- □ Improved neutron economy
- □ Improved seismic resistance
- Improved the resistance against fretting wear
- Debris-Filter Bottom Nozzle
- Improved Fuel Productivity

/http://www.knfc.co.kr/

Enhanced Reliability of Safety Systems

Safety Injection System

- 4 independent trains, Direct Vessel Injection
- Water source: In-containment Refueling Water Tank
- Fluidic Device for effective use of coolant

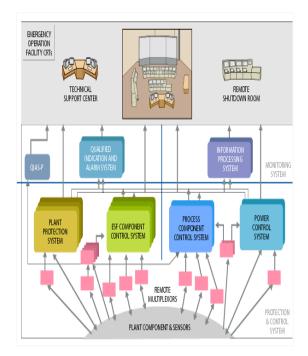

Auxiliary Feedwater System

- Diversity in component design: turbine driven and motor driven pumps
- Turbine drive pump can provide cooling water without the supply of AC power

Enhanced Physical Separation

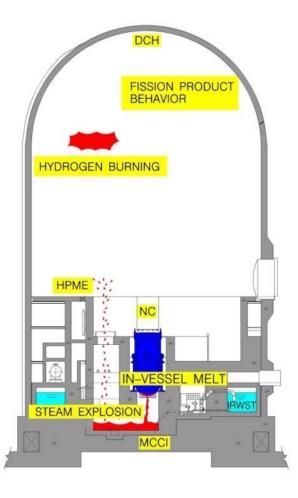
 Four-quadrant arrangement of safety systems

Quadrant A


Quadrant C

Digital I&C System

MMIS and I&C System


- Digital technology & data communication network
- □ Proven, Open & standard architecture
- □ Defense against common mode failure
 - Diversity between DCS and PLC
 - Reactor trip : PPS, DPS, Manual PPS Actuation
 - ESF-CCS : PPS, Manual by soft control, Hard wired Manual ESF Actuation
 - Alarm & Indications : IPS, QIAS-N, Diverse Indication
- Operability & Maintenance
 - Auto test, Self-diagnosis
- Computerized Procedure System

V&V for Human Factors Engineering Design
SSS Division

Severe Accident Mitigation

- Advanced design features for the prevention and mitigation of severe accidents
 - Safety Depressurization & Vent System
 - Hydrogen Control System
 - Large reactor cavity & corium chamber
 - Cavity Flooding System
 - In-Vessel Retention & Ex-Reactor Vessel Cooling System
 - Emergency Containment Spray Backup System
 - Equipment survivability assessment

Protection against External Hazard

Design consideration for external hazards

- Natural disasters: earthquake, floods and site specific conditions
- Man-made hazards: aircraft crash, fire, etc.

□ Post-Fukushima safety enhancement

- Installation of an Automatic Seismic Trip System
- Reinforcement of waterproof functions
- Reinforcing design basis of the emergency diesel generator and AAC
- Countermeasures to address loss of cooling in the spent fuel pool
- Installation of an external injection flow path for emergency cooling
- Securing mobile generator and batteries

APR1400: Safe, Reliable Technology
ALWR Technology Development in Korea

APR1400, Safe and Reliable Technology

□ APR1400, Evolutionary ALWR

- Advanced design features for safety enhancement
- Design features for severe accident mitigation
- Enhanced economics via uprated power, longer design life, longer fuel cycle, performance improvement and enhanced constructability
- 4 units currently under construction in Korea and another four units in the UAE
- Proven technology minimizes technical and licensing uncertainties
 - Proven by operation of reference technology
 - Proven by licensing approval
 - Proven by R&D programs
- Technology development is continuously underway for further safety improvement.

ALWR Technology Development in Korea

ALWR Technology Development with Safety Improvement

	OPR1000	APR1400	APR+	PPP
Reactor Model				Premier Power Reactor
First Commercial Operation	1995	2015	~ 2025	~
Size	1000 MWe	1400 MWe	1500 MWe	1000~1500 MWe
Design Life	40 yrs	60 yrs	60 yrs	80 yrs
CDF CFF	< 1×10 ⁻⁴ /RY < 1×10 ⁻⁵ /RY	< 1×10 ⁻⁵ /RY < 1×10 ⁻⁶ /RY	< 1×10 ⁻⁶ /RY < 1×10 ⁻⁷ /RY	"Zero" Severe Accident
Main Safety Systems	Active	Active	Active + Passive	Fully Passive

