Innovations in Water-Cooled Technologies: Candu Energy Perspective

OECD/NEA Workshop 11-12 February 2015 Issy-les-Moulineaux

Innovations: past, present and future

Agenda:

- Past history of CANDU evolution
- Innovation processes
- Heavy Water Reactor technology today
- Heavy Water Innovations and future potential

Background history — technology milestones

	Canadian Nuclear Milestones	
1950s	•	CRL development
	•	NRU, build up fuel testing, range of
		design concepts, materials research
1960s	•	AECL R&D delivery
10000	•	Fuel, fuel channel fundamentals
	•	Starting fuel cycle research
	•	CANDU and other prototypes
1970s	•	Start of AECL/industry R&D linkage
	•	Focus concept—delivery—operations
	•	Safety and licensing engagement
1980s	•	First wave completion
	•	Safety and licensing agenda identified
1990s	•	Operating issues identification
	•	Fuel cycle international cooperation
2000-		Consider consolidation
2000s	•	Canadian consolidation

•))

SNC · LAVALIN

3

World Technology Milestones

CANDU Evolution: Examples of development milestones

Risk-based safety requirements (1960s)

Digital computer control of reactor operation (1970s)

Demonstrate inherent decay heat removal by CANDU Moderator/shield tank (1980s)

Safety System Software qualification (1990s)

Innovation processes

Breakthroughs

- New fuels
- Passive safety
- Digital safety systems

Incremental improvements

- Increased plant lifetime
- Improving safety margins

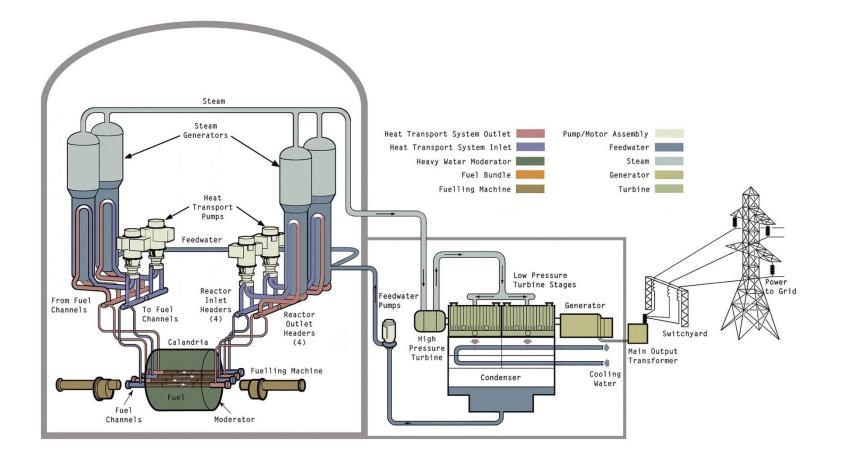
Consolidation

- Increasing capacity factor
- Addressing emerging problems
- Safety software validation

Heavy Water Reactor technology today (1)

CANDU 6 family of designs

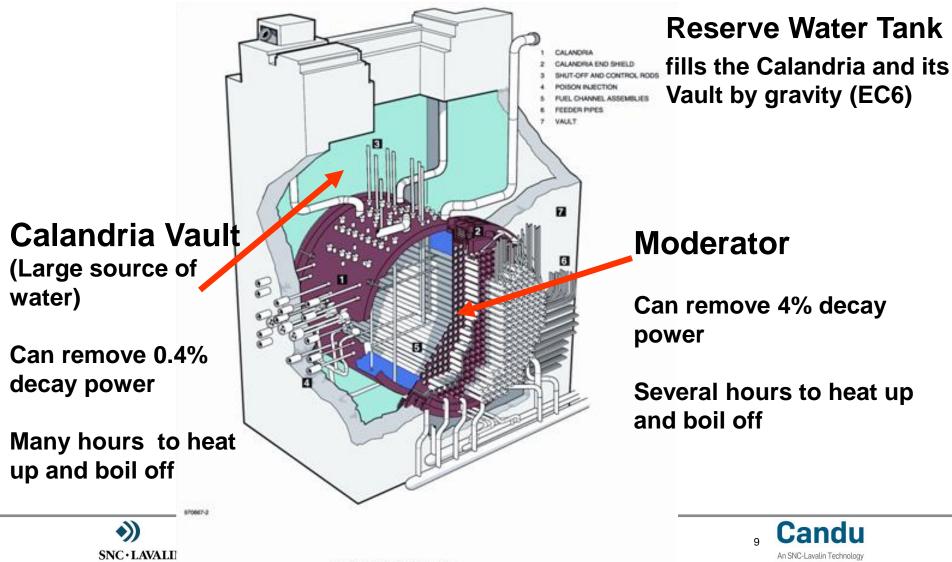
- EC6 (Enhanced CANDU 6) design:
- Canadian regulatory review complete 2013
- Generation III basis
- Incorporates Fukushima Lessons Learned
- Evolutionary design benefits of provenness
- Completely updated design basis and safety case
- Flexible fuel capability


Design basis

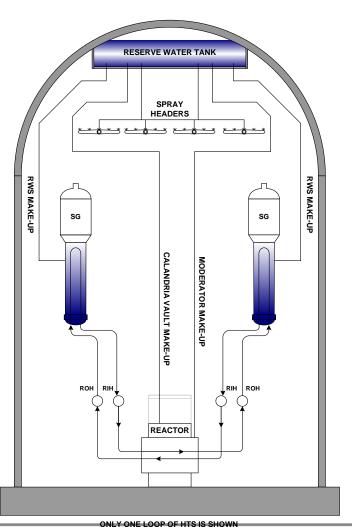
• Safety based on Engineered systems augmented by inherent features

General View of an EC6 Plant

Heavy Water Reactor technology today (2)


CANDU Innovation: recent progress

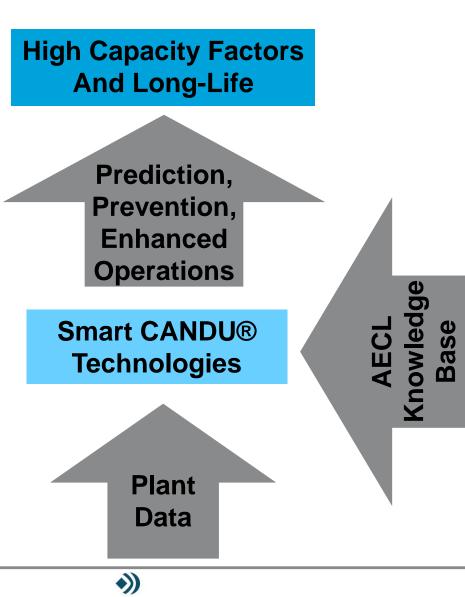
- Fuel cycle
 - Use of Recovered Uranium-blended fuel
 - Thorium-based fuels
 - MOX fuels
- Operational Performance
 - Build in 3 year interval between plant outages
- Extending plant life
- Towards 40 years plus 40 years
- EC6 Design features
 - Improved reactor instrumentation array
 - Improved shutdown units
 - Severe accident protective measures
 - Operator information systems
 - Distributed control system
- Inspection and Maintenance Tooling
 - Improved inspection speed and accuracy



Passive Heat Removal for Severe Accident Mitigation

CANDU 6 Reactor Assembly

Extra EC6 passive safety features



SNC · LAVALIN

- Elevated Reserve Water Tank to make-up:
 - Steam generators
 - Moderator
 - Calandria vault
 - Spray system
- Robust seismically qualified and aircraft crash-proof containment

Smart CANDU® technology – Gen III

SNC · LAVALIN

CAMLS CANDU Alarm Message List System

Intelligent System assists operators to cope with events such as blackouts.

ChemAND Chemistry Analysis and Diagnostic System

Health monitor for plant chemistry. Predicts performance of components, determines maintenance requirements and optimal operating conditions.

ThermAND Thermal Analysis and Diagnostic System

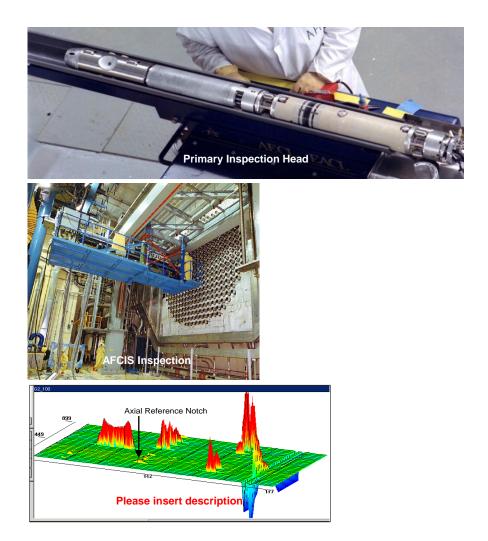
Health monitor for heat transfer systems & components. Ensures optimal margins and maximum power output.

<u>MIMC</u> (in testing) Maintenance Information Management Control

System linking health monitor data to plant work management.

Heavy Water Reactor technology today (3)

• Needs for CANDU Innovation:


- Harmonized safety assessment
 - Develop standard, globally accepted safety case
- On-line maintenance and inspection
 - Reduce inspection burden during outages
 - On-line fuel channel and piping inspection
- Effective Innovation Processes
 - Improve time to market
 - Upfront agreements on demonstration requirements
 - Ensure design features fully defined before project start

Improving capabilities in Fuel Channel Inspection

- Candu uses a variety of remotely controlled inspection systems to examine and maintain fuel channel components
- Tooling information systems are geared to rapid application of computer models and condition analysis tools
- Tooling is designed for speedy deployment during standard outages
- Next step on-line inspection and maintenance

Heavy Water Reactor innovations and future potential

Outcomes and needed innovations

- Public acceptance "no evacuation needed"
 - Expand use of passive features
 - Respond to public acceptance priorities
- Faster project completion
 - Supply chain innovations
 - Pre-licensing and speedier commissioning
- Closed fuel cycle
 - Simplify fuel fabrication requirements
 - Make full use of low enrichment requirement
- Minimize fuel waste
 - DUPIC ? Thorium or inert matrix fuels ?
- More flexible operation
 - Load and power cycling demonstration

