

1

Status of NEA Nuclear Science activities related to accident tolerant fuels

Jim Gulliford, Head of Nuclear Science OECD-NEA

Outline

- OECD-NEA Nuclear Science & Data Bank
 - Activities related to innovative fuels and fuels performance
- Nuclear Science Activity on ATF for LWRs (EGATFL)
 - Response to Fukushima
 - Nuclear Science Workshops on ATF
 - Initiation of Programme of Work under New Expert Group

NEA Committees

As of 18 September 2012

Nuclear Science-Data Bank Products & Services

Background to Formation of New NEA EGATFL

- June 2011 Ministerial Meetings, International Fukushima Forum
- June 2011 Nuclear Science Meeting NSFF e-forum
- November 2011 Nuclear Science Bureau
 - Discussion threads from NSFF reviewed
 - Fukushima identified as topic of in-depth discussion at 2012 NSC meeting
- June 2012 Nuclear Science Meeting
 - Proposal for ATF Workshop received from the Working Party on Scientific Issues of the Fuel Cycle (K. Pasamehmetoglu, K. McCarthy)
- 10-12 December 2012: 1st OECD-NEA Workshop on Increased Accident Tolerance of Fuels for LWRs
- 28-29 October 2013: 2nd OECD-NEA Workshop on Increased Accident Tolerance of Fuels for LWRs
- 28-29 April 2014: Start-up meeting of EGATFL
- 23-25 September 2014: 2nd EGATFL meeting

9

Definition of Accident Tolerant Fuels

Nuclear Energy

Fuels with enhanced accident tolerance are those that, in comparison with the standard UO_2 – Zircaloy system, can **tolerate loss of active cooling** in the core for a **considerably longer time period** (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations.

Improved Reaction Kinetics with Steam

- Heat of oxidation
- Oxidation rate

Improved Fuel Properties

- Lower operating temperatures
- Clad internal oxidation
- Fuel relocation / dispersion
- Fuel melting

High temperature during loss of active cooling

Slower Hydrogen Generation Rate

- Hydrogen bubble
- Hydrogen explosion
- Hydrogen embrittlement of the clad

Improved Cladding Properties

- Clad fracture
- Geometric stability
- Thermal shock resistance
- Melting of the cladding

Enhanced Retention of Fission Products

-Gaseous FPs, Solid/liquid FPs

From K. Pasamehmetoglu (INL), Summary of the US National Workshop, OECD-NEA Workshop on ATF, Dec. 2012 10

Key Elements of PoW for New NEA Expert Group

- Data and characteristics of candidate materials, including:
 - Advanced claddings: coated Zr-based alloys, SiC/SiC ceramic composites, advanced steels, refractory metals (e.g. molybdenum), etc.;
 - Advanced Fuels: doped UO₂ for enhanced thermo-mechanical properties, high density fuels such as U-silicide and U-nitride, dispersion fuels with coated particles, etc.;
 - Non-fuel core components such as fuel channels, control rods and blades, and fuel assembly hardware;
- Issues related to the modelling of the advanced materials (fuel/cladding behaviour in normal and transient conditions, including DBA and BDBA, etc.);
- A review of the needs related to an experimental validation of the most promising materials: available facilities, opportunities of joint experiments (including out-of-pile and in-pile experiments), identification of gaps, etc.
- The establishment of appropriate metrics to help prioritise between the ATF candidates;
- The definition and **evaluation of reference scenarios** to evaluate the effectiveness of ATF candidates.

EGATFL Structure

Expert Group on Accident Tolerant Fuels of LWRs (EGATFL)

Information Exchange and Technical Discussions on general issues of ATF

Task Force 1

Systems Assessment

- Metrics
 - Economics
 - Fuel cycle (SNF, ...)
 - Operations
 - DBAs
 - BDBAs
 - ...
- TRL definition
- Illustrative Scenario (to feed TF1 and TF2)
- Parametric studies
- System codes

Deliverables

- Definition of illustrative scenarios and first parametric studies
- State-of-the-art report (metrics, system codes)+ Recommendations and priorities

Chair: S. Bragg-Sitton (INL)

Task Force 2 Cladding/Core Materials

- Properties
- Evaluation under normal operations (incl. fretting)
 - Evaluation under illustrative scenario
 - PCI

٠

٠

٠

- Testing needs data gaps (to be linked to RTFDB)
 - Modeling needs modeling gaps
- Experimental
 infrastructure

Deliverables

 State-of-the-art report + Recommendations and priorities

Chair:

M. Moatti (EDF)

Task Force 3 Fuel Concepts

- Properties
- Evaluation under normal operations (incl. fretting)
- Evaluation under illustrative scenario
- PCI
- Testing needs data gaps (to be linked to RTFDB)
- Modeling needs modeling gaps
- Recommendations on priorities

Deliverables

 State-of-the-art report + Recommendations and priorities

> Chair: M. Kurata (JAEA)

Chair: K. Pasamehmetoglu (INL)

ATF candidates: Cladding

- Advanced steels (e.g. FeCrAl)
- Refractory metals (e.g. Mo)
- Ceramic cladding (SiC)
- Innovative alloys with dopants
- Zircaloy with coating or sleeve
 - SiC CMC
 - MAX-phase ceramics
 - Other

Comparison of MELCOR predicted cladding oxidation heating produced during a TMI-2 accident sequence.

Each concept has some pros and cons across the spectrum of operating and transient conditions of interest. A systematic analytical and experimental evaluation is being performed during the feasibility studies.

30

From S. Bragg-Sitton (INL), OECD-NEA Start-up Meeting of EGATFL, Apr. 2013

ATF candidates: Fuel

Higher density fuels (metal, nitride, silicide)

- Higher thermal conductivity
- Higher fissile density to compensate for neutronic inefficiency of some new cladding concepts without increasing enrichment limits

Oxide fuels with additives

- Higher thermal conductivity
- Fission product gettering

Microencapsulated fuels

 Particle fuel dispersed in a ceramic or metallic matrix

Uranium Silicide Fabrication

Highest achieved density: 94.6% theoretical (11.5 g/cc)

Each concept has pros and cons across the spectrum of operating and transient conditions of interest. A systematic analytical and experimental evaluation is being performed during the feasibility studies.

From S. Bragg-Sitton (INL), OECD-NEA Start-up Meeting of EGATFL, Apr. 2013

Examples of Timelines for ATF development

- In environment
 - In environment + local deformation (special design for early contact)
 - Conditioning irradiated rodlet(s) for LOCA test in a second step
- Step 2
 - LOCA test Direct benefit evaluation

Timina

15 - 20 cm length clads may be short term delivered now 50 - 60 cm clads could be fabricated end 2014 / early 2015 Discussion on detailed program and PIE expected around mid-2014

NUGENIA Technical Area 5 :

-several proposals to be coordinated around ATF cross evaluation goals and basic data acquisition (Falstaff, Forclad, Ramat, ...) → Call H2020 in 2014/9 need of harmonization with other ATF initiatives

OECD-NEA Start-up meeting of the Expert Group on ATF of LWRs, April 28-29, 2014 11

Sample Fabrication and Characterization

International workshop on attributes and metrics

National workshop on attributes and metrics

Selection of candidates for feasibility assessment

U.S. DEPARTMENT OF

ENERGY

Nuclear Energy

💛 Roadmap

Yearly reviews and reorientation

EGATFL: 30 organisations from 13 member countries + PRC

Country	Organisation	Country	Organisation
Belgium	SCK-CEN	Rep. of Korea	KAERI
P.R. of China	CGN	Norway	OECD-Halden
Czech Rep.	ALVEL	Russian Federation	Kurchatov Institute
France	AREVA		NITI
	CEA	Switzerland	PSI
	EDF	Sweden	Westinghouse
	IRSN		AREVA
Germany	КІТ	USA	EPRI
Japan	CRIEPI		GE
	JAEA		INL
	Kyoto University		Univ. Illinois
	Muroran Inst. Techn.		Univ. Florida
	NFD		MIT
	Toshiba		ORNL
		UK	NNL
P.R. of China	CGN	International org.	IAEA

 Next EGATF Meeting will be 3-5 March 2015 at NEA Offices

• Thank you for your attention....