Data Bank

The JEFF-3.1.1 Nuclear Data Library

JEFF Report 22

Validation Results from JEF-2.2 to JEFF-3.1.1

A. Santamarina, D. Bernard, P. Blaise, M. Coste, A. Courcelle, T.D. Huynh, C. Jouanne, P. Leconte, O. Litaize, S. Mengelle, G. Noguère, J-M. Ruggiéri, O. Sérot, J. Tommasi, C. Vaglio, J-F. Vidal

> Edited by A. Santamarina, D. Bernard, Y. Rugama

> > © OECD 2009 NEA No. 6807

NUCLEAR ENERGY AGENCY Organisation for Economic Co-operation and Development

ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

The OECD is a unique forum where the governments of 30 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies.

The OECD member countries are: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The Commission of the European Communities takes part in the work of the OECD.

OECD Publishing disseminates widely the results of the Organisation's statistics gathering and research on economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its members.

This work is published on the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the Organisation or of the governments of its member countries.

NUCLEAR ENERGY AGENCY

The OECD Nuclear Energy Agency (NEA) was established on 1st February 1958 under the name of the OEEC European Nuclear Energy Agency. It received its present designation on 20th April 1972, when Japan became its first non-European full member. NEA membership today consists of 28 OECD member countries: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, Norway, Portugal, Republic of Korea, the Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The Commission of the European Communities also takes part in the work of the Agency.

The mission of the NEA is:

- to assist its member countries in maintaining and further developing, through international co-operation, the scientific, technological and legal bases required for a safe, environmentally friendly and economical use of nuclear energy for peaceful purposes, as well as
- to provide authoritative assessments and to forge common understandings on key issues, as input to government decisions on nuclear energy policy and to broader OECD policy analyses in areas such as energy and sustainable development.

Specific areas of competence of the NEA include safety and regulation of nuclear activities, radioactive waste management, radiological protection, nuclear science, economic and technical analyses of the nuclear fuel cycle, nuclear law and liability, and public information.

The NEA Data Bank provides nuclear data and computer program services for participating countries. In these and related tasks, the NEA works in close collaboration with the International Atomic Energy Agency in Vienna, with which it has a Co-operation Agreement, as well as with other international organisations in the nuclear field.

Corrigenda to OECD publications may be found on line at: www.oecd.org/publishing/corrigenda. © OECD 2009

You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to *rights@aced.org*. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at *info@copyright.com* or the Centre français d'exploitation du droit de copie (CFC) contact@cfcopies.com.

Cover credits: Commissariat à l'énergie atomique, France

Foreword

This report describes the incremental method used to improve JEFF evaluations since the release of the JEF-2.2 library in 1992. In order to be accepted as a JEFF-3 evaluation, new evaluations must be demonstrated to be more consistent with both differential and targeted integral measurements. The report first describes the validation of the JEF-2 library and the user feedback received by evaluators. The main improvements introduced in the JEFF-3.0 file, and in a second step in JEFF-3.1, are then presented. The report highlights the modifications that would be required for JEFF-3.1 evaluations to fit with integral experiments and to meet LWR target accuracy. The new evaluations (²²⁷Np, ²²⁹Pu, ^{160,91,96}Zr and seven fission products) introduced in the recommended JEFF-3.1.1 file are also described.

The current validation of the JEFF-3.1.1 file is detailed. Fundamental targeted experiments, LWR mock-up experiments, PWR and BWR chemical assays and SNF reactivity worth measurements are analysed using both TRIPOLI4 and APOLLO2.8 reference calculations.

This report demonstrates that JEFF-3.1.1 is probably the best international library currently available. It is more accurate than ENDFB/VII for fuel inventory, MOX reactivity and plutonium ageing, and reactivity coefficients such as temperature coefficient and stainless tell reflectors. Moreover, JEFF-3.1.1 evaluations benefit from the feedback of validation studies for fast breeder reactors, the fuel cycle, criticality safety and burn-up credit.

JEFF-3.1.1 is used worldwide for PWR and BWR calculations, particularly in the new ARCADIA package of Areva-NP. It is also used in ERANOS2 for Generation IV designs.

Please note that while this report is printed in black and white, several of the graphics are best viewed in colour. A colour version may be viewed on the NEA website at www.nea.fr/html/dbdata/nds_jefreports/.

Acknowledgements

The authors and editors acknowledge the JEFF Working Group participants, particularly Drs. Sublet and van der Marck, for their contribution to the JEFF-3 experimental validation of ICSBEP benchmarks, as well as experts from Areva-NP for their contribution to the JEFF-3.1.1 library validation throughout the full light water reactor (LWR) cycle. The authors also wish to thank EDF for its financial support of *Commissariat à l'énergie atomique* (CEA) participation in this project.

Table of contents

Foreword		3		
Chapter 1: Introduction				
Chapter 2: JEF-	2 validation. Feedback for improved evaluations	11		
Chapter 3: Main improved evaluations in JEFF-3.1				
Chapter 4: Nev	v evaluations for JEFF-3.1.1	31		
4.1	²³⁷ Np evaluation	32		
4.2	²³⁹ Pu evaluation	33		
4.3	¹⁶ O evaluation	36		
4.4	Zr evaluations	36		
4.5	FP evaluations	37		
Chapter 5: The recommended CEA2005v4 library for APOLLO2.8				
Chapter 6: Val	idation of JEFF-3.1.1 and CEA2005v4	45		
6.1	$\rm K_{\rm eff}$ of fresh $\rm UO_2$ core	45		
6.2	$\rm K_{\rm eff}$ of Pu solutions and MOX cores	45		
6.3	Depletion calculation and spent fuel inventory	46		
6.4	Fuel reactivity loss versus burn-up	48		
6.5	Reactivity temperature coefficient	50		
6.6	Stainless steel reflectors	50		
Chapter 7: Conclusion				
References		55		

List of figures

1	Calculation/experiment bias (in pcm) on the critical K _{eff} of UOX lattices	14
2	Calculation/experiment bias (in pcm) on the critical K _{eff} of uranium solutions	14
3	Calculation/experiment comparison for the K _{eff} of ²³⁵ U homogeneous systems	19
4	JEFF-3 and JEF-2 capture cross-section in the first ²⁴¹ Pu resonance	20
5	Comparison of the ⁵⁶ Fe inelastic scattering in major evaluations	21
6	Comparison of JEFF-3.1 evaluation and measurements for the first resonances of ²⁴¹ Am	23
7	²⁴¹ Am to ^{242g} Am branching ratio as a function of energy in JEFF-3.1	24
8	Comparison of ¹⁰³ Rh measured cross-section with JEFF-3.0 and JEFF-3.1 evaluations	24
9	Comparison of H ₂ O measured total cross-section with IKE (JEFF-3.1) and ENDF/B-VI	25
10	JEFF-3 calculation results of LEU-COMP-THERM benchmarks	27
11	JEFF-3 calculation results of LEU-COMP-THERM benchmarks	28
12	JEFF-3 calculation of HEU benchmarks with a fast or intermediate spectrum	28
13	MCNP-JEFF-3.1 analysis of critical Pu solutions	33
14	Experimental, JEFF-3.1 and JEFF-3.1.1 ²³⁹ Pu capture cross-section	34
15	Experimental, JEFF-3.1 and JEFF-3.1.1 ²³⁹ Pu fission cross-section	35
16	Comparison of measured v_p multiplicity with JEFF-3.1 and JEFF-3.1 1 evaluations	25
17	$^{16}\Omega(n \alpha)$ cross-section in IFFF-3.1.1	36
12	Nat $Tr(n_2)$ cross-section in IEFE-3.1.1	37
10	103 Pu(n c) (T = 29 d) cross section in IEE(E) 2.2/2.1.0 and WPE(C22	20
20	$I_{1/2} = 35 \text{ u}$ cross-section in JEF(E) 2.2/3.1.0 and WPEC22	20
20	99 Ta(n x)/T = 2.1 ^{E5} x) cross section in JET(T) 2.2/3.1.0 and WFEC23	20
21 22	$1 C(11, \gamma) (1_{1/2} = 2.1 \gamma) Closs-section in JEF(F)-2.2/3.1.0/3.1.1$	27 ∕12
22 22	The DEDUE gore with SS reflector in the EOLE facility	43 E1
25	THE FLACE COLE WITH 55 TEHECTOL III THE EOLE facility	10

List of tables

1	Spent fuel measurements used in the JEF-2 data re-estimation	12
2	Calculation/experiment comparison (C/E – 1 in %) in PWR UOX assemblies	12
3	K _{eff} measurements in low-enriched LWR lattices included in the JEF-2 data re-estimation	13
4	K _{eff} measurements in highly-enriched uranium solutions used in JEF-2 ND re-estimation	13
5	JEF-2 data modifications (%) obtained from RDN re-estimation	15
6	Calculation/experiment bias on the reactivity worth of separated FP	16
7	Resonance parameters of the ¹³³ Cs strong resonance	20
8	Comparison of Hf capture in JEF-2, JEFF3.0-JENDL-3.3 and the new JEFF-3.1 evaluations	25
9	Calculation/experiment comparison of actinide concentration in Gravelines PWR SNF	26
10	C/E bias (in pcm) on various MASURCA FBR cores	29
11	Updated isotopes in JEFF-3.1.1	31
12	Corrected evaluations in JEFF-3.1.1	32
13	TRIPOLI-4-JEFF-3.1 analysis of EOLE 100% MOX cores	33
14	CEA2005.V4.1 library content	42
15	Calculation/experiment comparison on the K _{eff} of EOLE UO ₂ regular cores	45
16	Calculation/experiment comparison of MOX lattice reactivity (B _m ² measurement)	46
17	C/E bias (pcm) on multiplication factor of Pu systems	46
18	(C-E)/E bias (%) for PWR spent fuel inventory (burn-up: 64 GWd/t)	47
19	(C-E)/E bias (%) for BWR actinide concentrations (burn-up: 33 GWd/t)	48
20	(C-E)/E bias (%) for BWR fission product concentrations	49
21	(C-E)/E \pm δ E/E on reactivity loss with burn-up (MINERVE oscillation of LWR rod cuts)	49
22	(C-E)/E \pm δ E/E on reactivity loss with burn-up (MINERVE oscillation of MOX rod cuts)	50
23	(C-E) $\pm \delta E$ on MOX temperature coefficient (pcm/°C)	50
24	Residual reactivity (pcm) in EOLE UO ₂ -3.7% ²³⁵ U regular cores	51
25	C/E bias (%) on flux attenuation throughout the core and the SS reflector	52

Chapter 1: Introduction

Since the release of the JEF-2 European File in 1992, incremental improvement of this library has been ongoing. Contrary to the global evaluation substitution employed when moving from ENDF/B-VI to B-VII, the incremental method sustained by the CEA allowed new evaluations only if JEF-2 nuclear data were found in disagreement with differential measurements and if calculationmeasurement bias in targeted integral experiments was unacceptable. The proposed new evaluation must be demonstrated to be more consistent with both differential and integral measurements in order to be accepted as a JEFF-3 evaluation.

Chapter 2 of this report summarises the experimental validation of the JEF-2 library and the feedback provided to evaluators, which leads to improved JEFF-3 evaluations. Chapter 3 presents the main improvements introduced in a first step in the JEFF-3.0 file and in a second step in the JEFF-3.1.0 file. Chapter 4 highlights the modifications necessary for JEFF-3.1.0 evaluations to maintain compatibility with integral experiments and to meet LWR target accuracy. The new evaluations (³³⁷Np, ²³⁹Pu, ¹⁶O, ^{91,96}Zr and seven FP) introduced in the recommended JEFF-3.1.1 file are described. Chapter 5 presents the CEA2005v4.1 multi-group library recommended for APOLLO2.8, processed from JEFF-3.1.1. Chapter 6 summarises the current validation of the JEFF-3.1.1 file and the CEA2005v4.1 library.

Chapter 2: JEF-2 validation. Feedback for improved evaluations

Over a ten-year period, an extensive validation of the JEF-2 evaluation was performed at the CEA. Both the JEF-2 and the CEA93 libraries of the APOLLO2.5 code (processed from JEF-2.2) were validated (Santamarina, 2002). Activities undertaken in this regard include:

- fundamental experiments and reactivity worth measurements in the MINERVE pool reactor;
- LWR mock-up experiments in the "zero-power" reactor EOLE;
- chemical assays on PWR spent fuel assemblies.

Sensitivity studies (Chabert, 2002) as well as nuclear data re-estimation using the RDN code were carried out (Courcelle, 2004).

Traditional nuclear data feedback is often based on reactivity experiments and central reaction rate ratio measurements of specific isotopes. The strength of the CEA study was that it considered not only k_{eff} measurements in UOX and MOX water-moderated lattices and highly-enriched uranium experiments, but also included isotopic ratios measured in PWR post-irradiation evaluations. These evaluations consist of measuring fuel rod cuts for the relative concentration N/N_{U238} of nuclides during irradiation. The samples to be analysed are extracted from the assembly at each end of cycle. After cooling and transportation, samples are dissolved in a hot acid solution and analysed by various techniques depending on the isotopic ratio to be measured (alpha, gamma or mass spectrometry). Each experimental value can be considered as an individual integral measurement: about 400 C/E values from UOX and MOX assemblies have been included in the RDN code. Measured actinides include ^{234,235,236}U, ²³⁷Np, ^{238,239,240,241,242}Pu, ^{241,243}Am and ^{244,245}Cm. Table 1 summarises the PIE measurements included in the statistical adjustment.

APOLLO2.5 calculations follow the recommendations of the accurate reference scheme "CEA-97" (Santamarina, 2004), as defined specifically for MOX (Chabert, 2000) and taking into account thermo-mechanics and cycle irradiation history (Chabert, 2000a). The calculation/experiment biases obtained for major actinides and used in JEF-2 nuclear data re-evaluation are summarised in Table 2. These results point out the large underestimation of ²³⁸Pu and ²⁴²Pu build-ups (about -8% at 40 GWd/t).

²³⁵ U wt.%	of samples	Burn-up range
3.10%	7	20-38 GWd/t
3.14%	8	49-58 GWd/t
4.50%	8	26-60 GWd/t
	235 <mark>U wt.%</mark> 3.10% 3.14% 4.50%	235 U wt.% of samples 3.10% 7 3.14% 8 4.50% 8

Table 1: Spent fuel measurements used in the JEF-2 data re-estimation

Fuel MOX PWR name	Pu enrich ^t Pu wt.%	Number of samples	Burn-up range
Saint-Laurent B1	2.91%	3	10-38 GWd/t
	4.42%	4	13-42 GWd/t
	5.64%	2	28-45 GWd/t

Table 2: Calculation/experiment comparison (C/E – 1 in %) in PWR UOX assemblies

Isotope		20 GWd/t	40 GWd/t	60 GWd/t
	e = 3.1%	3.5	2.3	
²³⁴ U	e = 4.5%	0.5	1.0	0.7
	Uncertainty	±1.1	±1.4	±2.0
	e = 3.1%	0.9	2.6	2.0
²³⁵ U	e = 4.5%	1.4	2.5	3.1
	Uncertainty	±1.1	±2.0	±3.5
	e = 3.1%	-3.7	-3.4	-3.8
²³⁶ U	e = 4.5%	-4.8	-4.7	-4.5
	Uncertainty	±1.3	±0.9	±0.6
	e = 3.1%	-9.1	-2.0	-2.0
²³⁷ Np	e = 4.5%	-2.3	-3.7	-4.5
	Uncertainty	±3.0	±2.8	±2.7
	e = 3.1%	-8.7	-5.3	-4.5
²³⁸ Pu	e = 4.5%	-12.2	-10.6	-9.0
	Uncertainty	±4.0	±3.9	±3.7
	e = 3.1%	0.6	2.1	2.0
²³⁹ Pu	e = 4.5%	-0.7	0.4	2.5
	Uncertainty	±0.9	±1.1	±1.3
	e = 3.1%	-0.3	-0.2	0.3
²⁴⁰ Pu	e = 4.5%	-2.9	-2.1	-0.5
	Uncertainty	±1.9	±1.5	±1.1
	e = 3.1%	-2.7	-1.0	-0.5
²⁴¹ Pu	e = 4.5%	-5.3	-4.2	-1.5
	Uncertainty	±2.3	±1.8	±1.6
	e = 3.1%	-6.6	-6.9	-5.5
²⁴² Pu	e = 4.5%	-9.8	-9.3	-7.8
	Uncertainty	±4.0	±3.4	±2.8

The selected K_{eff} and buckling measurements in low-enriched UO_2 lattice experiments cover a wide range of moderation ratios. Most of them are LWR-type and have been carried out in the EOLE and MINERVE reactors. VVER and HCPWR critical experiments are taken from the International Criticality Safety Database ICSBEP handbook (Table 3).

Experiment	Lattice pitch (cm)	V_{H20}/V_{U02}	²³⁵ U wt.%	Number of C/E
CRISTO III	0.96	0.45	3.3%	1
EPICURE	1.26	1.25	3.7%	1
MISTRAL1	1.32	1.75	3.7%	1
CAMELEON	1.26	1.80	3.5%	2
CRISTO I, II	1.58-1.86	3.50-5.46	3.0%	3
VALDUC	1.26-2.10	1.82-7.58	4.8%	3
VVER Apitch	1.10-1.90	0.89-5.51	3.6%	5
ZPR-HiC	1.17-1.35	0.43-1.37	3.0%	5

Table 3: K_{eff} measurements in low-enriched LWR lattices included in the JEF-2 data re-estimation

Experiments using highly-enriched uranium solution $[UO_2F_2+H_2O \text{ or }UO_2(NO_3)_2+HNO_2]$ are widely used in criticality safety to verify the accuracy of nuclear data, particularly η_{U235} . As summarised in Table 4, we investigated experiments from various international laboratories involving uranium concentrations ranging from 20 g/l (corresponding to softer neutron spectrum) up to 700 g/l (intermediate neutron spectrum).

Table 4: K_{eff} measurements in highly-enriched uranium solutions used in JEF-2 ND re-estimation

Laboratory	ICSBEP name	Solution	Conc. range g/l U	Number of C/E values
ORNL	Heu-Sol-Therm-009	$UO_2F_2+H_2O$	213-696	4
ORNL	Heu-Sol-Therm-010	$UO_2F_2+H_2O$	95	1
ORNL	Heu-Sol-Therm-011	$UO_2F_2+H_2O$	53	2
ORNL	Heu-Sol-Therm-012	$UO_2F_2+H_2O$	20	1
ORNL	Heu-Sol-Therm-032	$UO_2(NO_3)_2$	14.8	1
Rocky Flats	Heu-Sol-Therm-001	$UO_2(NO_3)_2$	55-358	8
IPPE Obninsk	Heu-Sol-Therm-018	$UO_2(NO_3)_2$	300	1
IPPE Obninsk	Heu-Sol-Therm-019	$UO_2(NO_3)_2$	447	1

In an effort to minimise errors in the K_{eff} calculation of UOX lattices and highly-enriched systems, the Monte Carlo code TRIPOLI-4 was used with a JEF-2 pointwise cross-section. Resonance self-shielding in the unresolved range was also accounted for using probability tables. The calculation/experiment comparison for UOX regular lattices is plotted in Figure 1.

C/E values for highly-enriched uranium solutions are displayed in Figure 2, which shows an overestimation of the JEF-2.2 eigenvalues for high 235 U content.

THE JEFF-3.1.1 NUCLEAR DATA LIBRARY - © OECD/NEA 2009

- Experiment + Exp. Unc.

-1200 +

Conc U g/l

 $\rm K_{eff}$ sensitivity profiles to nuclear data were easily obtained from the First Order Perturbation Theory implemented in APOLLO2. Sensitivity coefficients to the cross-sections and multiplicities of the main isotopes were derived from the European JEF 15-group structure. For isotopic ratios, sensitivity coefficients have to be assessed as a function of the burn-up; therefore direct APOLLO2 calculations were carried out.

The main trends on JEF-2 data obtained from the RDN re-estimation are summarised in Table 5. In this table, nuclear data modifications in bold are considered to be significant, as the uncertainty (1σ) after adjustment is significantly reduced and lower than the data modification.

Energy range	Change in %	Std. dev. after adi	Std. dev. before adi
²³⁵ U	Capture	,	,
12.03 keV-454 eV	+6.3	8.8	10.0
454 eV-22.6 eV	+12.9	3.1	10.0
22.6 eV-4.0 eV	+12.8	3.6	10.0
4.0 eV-0.54 eV	+12.4	3.7	10.0
0.54 eV-0.1 eV	+0.7	1.6	2.0
< 0.1 eV	+0.4	0.8	1.0
²³⁵ U	Vt		
22.6 eV-4.0 eV	+0.1	0.7	0.7
4.0 eV-0.54 eV	+0.2	0.7	0.7
0.54 eV-0.1 eV	+0.3	0.5	0.7
< 0.1 eV	+0.1	0.2	0.4
²³⁸ U	Capture		
12.03 keV-454 eV	-0.1	2.2	2.2
454 eV-22.6 eV	-0.5	1.6	2.0
22.6 eV-4.0 eV	-0.7	1.7	2.0
4.0 eV-0.54 eV	0.0	1.0	1.0
²³⁸ U	n,2n		
19.6 MeV-6.07 MeV	+6.8	2.1	10.0
²⁴¹ Pu	Capture		
454 eV-22.6 eV	+4.9	10.0	10.0
22.6 eV-4.0 eV	+11.2	9.8	10.0
4.0 eV-0.54 eV	+0.8	7.0	7.0
0.54 eV-0.1 eV	+7.4	2.6	5.0
< 0.1 eV	+0.4	1.5	1.5

Table 5: JEF-2 data modifications (%) obtained from RDN re-estimation

Concerning the ^{238}U evaluation, a slight reduction by 0.6% of the shielded capture cross-section in the resolved range is suggested. However, considering the importance of this data for $K_{_{eff}}$ and Pu build-up calculations, this result is worth mention. An increase by 7% \pm 2%(1 σ) of the (n,2n) cross-section is requested.

The need for increasing ²³⁵U capture resonance integral in JEF-2 is quantified: +12% \pm 3%. The thermal value of $v_{..}^{U235} = 2.437$ is confirmed within 0.2% accuracy.

An accurate trend is shown for the epithermal capture of 241 Pu. The capture integral of the 0.26 eV resonance in JEF-2 should be increased by 7.4% ± 2.6% (correction linked to the underestimation of the 242 Pu build-up).

Concerning the main fission products (FP), the validation of the capture cross-section was achieved through reactivity worth measurement in MINERVE of separated FP samples. The JEF-2 calculation/experiment bias (average value between $R1-UO_2$ and $R2-UO_2$ experiments, i.e. LWR and thermal spectrum respectively) is summarised in Table 6.

Table 6: Calculation/experiment bias on the reactivity worth of separated FP

FP isotope	(C-E)/E ± 1σ
⁹⁵ Mo	-2% ± 3%
⁹⁹ Tc	+3% ± 3%
¹⁰³ Rh	+10% ± 3%
¹⁰⁹ Ag	-3% ± 3%
¹³³ Cs	+5% ± 3%
¹⁴³ Nd	-5% ± 2%
¹⁴⁵ Nd	0% ± 1%
¹⁴⁷ Sm	+2% ± 3%
¹⁴⁹ Sm	-5% ± 2%
¹⁵² Sm	-1% ± 2%
¹⁵³ Eu	-3% ± 3%
¹⁵⁵ Gd	-3% ± 3%

From these results on the 12 main poisoning FP (except decaying ¹³⁵Xe and ¹⁵¹Sm, and gaseous ¹³¹Xe), the following conclusions on the JEF-2 evaluations were drawn (Santamarina, 1999):

- ⁹⁵Mo, ⁹⁹Tc, ¹⁰⁹Ag, ¹⁴⁵Nd, ¹⁴⁷Sm, ¹⁵²Sm and ¹⁵⁵Gd are satisfactory.
- ¹⁵³Eu capture is acceptable, though the JENDL-3.2 evaluation improves the C/E agreement.
- A new evaluation of the ¹³³Cs is required in the resonance range, mainly for the large first resonance $E_{c_{S133}} = 5.9 \text{ eV}$, the resonance integral of which should be decreased by 6%.
- The $E_R = 1.3$ eV resonance integral of the ¹⁰³Rh nuclide should be strongly decreased by 10%. Since ¹⁰³Rh evaluations in international data files are no longer suitable, differential measurements must be launched at the Geel European Center.
- New evaluations of ¹⁴⁹Sm and ¹⁴³Nd are necessary for JEFF-3, in order to increase the (n,γ) cross-section by 5% in the 0-0.2 eV energy range.

From FP chemical analyses in PWR spent fuels, it was pointed out (Santamarina, 2000) that the ¹⁵⁴Eu and ¹⁵⁵Eu evaluations in JEF-2 are inaccurate; furthermore, ¹⁴⁴Nd build-up at high burn-ups confirmed the need to increase ¹⁴³Nd capture by 5%.

French PIE also contributed to suggestions for improvements in terms of FP yields, an example being that the ¹³³Cs yields of ²³⁵U and ²³⁹Pu thermal fissions must be increased by 2%. ¹⁴⁸Nd and ¹³⁷Cs are not absorbing FPs, but they are used as burn-up monitors and their calculated amounts must be predicted within 2% accuracy. Unfortunately, the JEF-2 ¹⁴⁸Nd yield from ²³⁹Pu fission is elevated compared to the Meek and Rider values, leading to a -2% low burn-up estimation.

These suggestions were made to the JEFF Group (Santamarina, 2008a), and have greatly contributed to the content of the JEFF-3.1 file.

Chapter 3: Main improved evaluations in JEFF-3.1

The 7% increase of the LDWL capture resonance integral (Leal, 1999) ($<\Gamma\gamma> = 40$ meV instead of 35 meV in JEF-2) in the new ²³⁵U evaluation allowed to dispel the longstanding underestimation of ²³⁶U-²³⁷Np-²³⁸Pu build-up in LWR spent fuel. Further, and as shown in Figure 3, this JEFF-3.0 evaluation enabled to halt the trend in K_{eff} overestimation of enriched uranium systems with hardened spectra (Courcelle, 2001).

HIGHLY ²³⁵U ENRICHED HOMOGENOUS SYSTEMS

The ²³⁸U evaluation was slightly improved with the (n,2n) cross-section increase of 10%. However, this JEFF-3.0 evaluation did not follow all our recommendations (Courcelle, 2001a). In particular the reduction of capture and the improvement of inelastic scattering were not performed.

The ²⁴¹Pu evaluation carried out in collaboration with ORNL (Derrien, 2005) allowed a correct prediction of ²⁴²Pu and ²⁴³Am build-up, thanks to the increase of the capture resonance integral (+6%) and $\Gamma\gamma^{\text{E-0.3eV}}$ = 33.3 meV (instead of 32.5 meV in JEF-2, as shown in Figure 4).

Figure 4: JEFF-3 and JEF-2 capture cross-section in the first ²⁴¹Pu resonance

Finally, as pertains to major actinides, the ²⁴⁰Pu evaluation performed by the CEA (Bouland, 1997) was adopted. This evaluation corrected the erroneous JEF-2 capture cross-section between resonances.

New evaluations were performed for the main poisoning FP (Courcelle, 2002) on the basis of our recommendations (separated FP worth in MINERVE oscillations and PIE). These JEFF-3.0 evaluations of ¹⁴⁹Sm, ¹⁴³Nd, ¹³³Cs and Eu isotopes are consistent both with integral and differential measurements. Concerning ¹⁴⁹Sm, an increase by 3% of the Γ_n neutron width was introduced for the first resonance. The compilation of the ¹⁴³Nd measurements with the MINERVE trend led to a JEFF-3.0 thermal value σ_{2200} = 338 b. The new ¹³³Cs evaluation was based mainly on the recent Nakajima (1990) measurements, as shown in Table 7. ¹⁵⁴Eu and ¹⁵⁵Eu evaluations in JEFF-3 originate from the ENDF/B-VI.7 file, in agreement with PIE results and actual Anufriev differential measurements.

	Eres. (eV)	Spin	Гtot (meV)	Гn (meV)	Гү (meV)
JEF-2.2	5.90	3	122.119	7.119	115
JENDL-3.2	5.88	3	130.103	6.103	124
JEFF-3.0	5.86	3	129.562	6.562	123
Nakajima	5.86	3	129.380	6.38 ± 0.26	123 ± 6

Table 7: Resonance parameters of the ¹³³Cs strong resonance

Furthermore, improved evaluations were introduced in JEFF-3.0 for important structural materials. The 56 Fe evaluation, derived from the previous

The ²³⁹Pu evaluation was mainly improved in the fast range.

European Fusion File EFF-3, is recognised as the best world-wide evaluation because it involves the recent high-resolution Gelina measurements with refined fluctuations described up to 10 MeV; Figure 5 compares the various ⁵⁶Fe international evaluations, which demonstrates that inelastic cross-section fluctuations above 2 MeV are represented only in JEFF-3.0. This refined representation allows accounting for resonance self-shielding, which is a key point for accurate calculation of steel core reflector (EPR and GEN-IV reactors).

Figure 5: Comparison of the ⁵⁶Fe inelastic scattering in major evaluations (JEFF-3 in red)

The $^{\rm 27}Al$ evaluation was improved (Leal, 2002) with a more realistic capture cross-section in the thermal range: $\sigma_c^{\rm 2200}$ = 233 mb (to compare with the 231 \pm 3 Mughabghab recommendation).

Isotopic evaluations were introduced for Zr isotopes.

The first Fission and Fusion File JEFF-3.0 was released in April 2002 (NEA, 2005) and the general-purpose library contains data for 340 materials from $_{1}H^{1}$ to $_{10}Es^{255}$.

JEFF-3.0 was immediately validated against experiments, and CEA feedback quickly suggested that this first version of JEFF-3 could not be used as a reference library for LWR calculations. Fuel inventory calculation was clearly improved using JEFF-3.0 as opposed to JEF-2, particularly for correct prediction of ²³⁵U depletion, ²³⁶U-²³⁷Np-²³⁸Pu build-up and ²⁴²Pu-²⁴³Am build-up. This result was demonstrated with SNF chemical analyses from French PWR (Bernard, 2004a) and Takahama (Courcelle, 2004a). Improvement of the fuel depletion calculation was also highlighted for MOX assemblies (Bernard, 2004). Predictions of ²³⁵U and ²³⁷Np from fuel cuts extracted after four and five irradiation cycles in Dampierre were improved.

 239 Pu build-up, however, remained unsatisfactory (an overestimation by about 4%), as did 241 Am and 242m Am build-ups, which respectively remained overpredicted (about +20% EOC) and underpredicted (-20%).

• The reactivity of CEA LWR cores was slightly underestimated (Courcelle, 2002), as were low-enriched uranium (LEU) benchmarks (Marck, 2003) from the ICSBEP International Database. Due to the fact that all major libraries underpredict LEU reactivity (-473, -475 and -338 pcm for JEFF-3.0, ENDF/B-VI.8 and JENDL-3.3 respectively, in average on LEU-COMP-THERM benchmarks) an OECD working group was set up to address this issue (WPEC Subgroup 22) (NEA, 2006a).

From all this integral information (including direct capture rate in EOLE experiments), it was concluded that the ²³⁸U evaluation must be improved (Derrien, 2005). Such improvements should include a decrease in the integral resonance by $1.0\% \pm 0.6\%$ (1 σ), and a slight increase in inelastic scattering above 4 MeV. These modifications would correct the K_{eff} underestimation of small cores characterised by large neutron leakage.

The ²³⁸U evaluation for JEFF-3.1 was performed in the framework of OECD WPEC Subgroup 22. The evaluation of resonance parameters from 0 to 20 keV (Courcelle, 2005), carried out in close co-operation by the CEA and ORNL, includes the most recent high resolution and transmission data. The effective resonance integral is reduced by 0.4% (mainly due to smaller neutron widths of the lowest s-wave resonances) and the thermal value was adjusted according to the recent Trkov recommendation $\sigma_c^{2200} = 2.683$ b. The CEA-BRC evaluation, based on coupled-channel calculations, was adopted for the unresolved resonance range and inelastic scattering (Lopez-Jimenez, 2005). This JEFF-3.1 evaluation enabled an improved prediction of ²³⁹Pu formation in LWR spent fuels and an accurate prediction of K_{eff} for LWR-LEU cores (Sublet, 2004).

In order to improve Pu ageing calculation and minor actinide inventory prediction, a new ²⁴¹Am evaluation was proposed for JEFF-3.1 (Bernard, 2004a). From four types of integral information (²⁴¹Am/²⁴¹Pu chemical assays, ²⁴²Cm and ²⁴³Cm at low burn-up, Pu ageing reactivity worth in EOLE MOX cores, irradiation of separated ²⁴¹Am in the ICARE experiment), the following modifications to the previous evaluation were derived:

- 241 Am (n, γ) increased by +15% ± 3% (1 σ) in the range 0.01-2 eV;
- branching ratio 241 Am $\rightarrow ^{242m}$ Am increased up to BR = 0.13 ± 0.01.

The new ^{241}Am evaluation (Bouland, 2005) has a thermal value increased by 5% ($\sigma_{\rm c}^{2200}$ = 647 b), more consistent with French measurements carried out by Fioni in 2001 ($\sigma_{\rm c}^{2200}$ = 696 ± 48 b). The JEFF-3.0 resonance evaluation was mainly

based on Belanova differential measurements. In the JEFF-3.1 evaluation, for the 0.3 eV thermal resonance the Slaughter measurement was also introduced in the SAMMY analysis (which gave a 22% increase in the resonance area), and the Derrien 1975 measurements were used for the next three resonances predominant for the ²⁴¹Am capture rate (Figure 6).

Figure 6: Comparison of JEFF-3.1 evaluation and measurements for the first resonances of ²⁴¹Am

Differential and integral experiments (^{242m}Am build-up) and theoretical assumptions (Bernard, 2006d) allowed establishing an accurate branching ratio of ^{242g}Am dependent on neutron energy, as shown in Figure 7.

In order to improve ²⁴⁵Cm and ²⁴⁶Cm build-up, the ²⁴⁵Cm evaluation was changed in JEFF-3.1 with a 3.8% capture increase (σ_c^{2200} = 359 b), in agreement with our recommendation (Bernard, 2004a).

The improvement of two main FP, ¹⁰³Rh and ⁹⁵Mo, was introduced in JEFF-3.1. The ¹⁰³Rh evaluation was performed at the CEA (Dupont, 2005) using the transmission measurements from the IRMM European Centre: compared to JEFF-3.0, the thermal capture and the 1.3 eV resonance integral are respectively lowered by -1.7% and -6.4%, as shown in Figure 8 (in agreement with the reactivity worth of ¹⁰³Rh measured in MINERVE).

Reactivity worth measurements of Hf rods in EOLE and Hf plates in AZUR zero-power reactors at Cadarache led to the realisation that Hf poisoning worth was overestimated. New JEFF-3.1 evaluations for Hf isotopes were therefore performed (Noguère, 2005) using recent TOF measurements at RPI. These

Figure 7: ²⁴¹Am to ^{242g}Am branching ratio as a function of energy in JEFF-3.1

Figure 8: Comparison of ¹⁰³Rh measured cross-section with JEFF-3.0 and JEFF-3.1 evaluations

evaluations allow the reduction of the resonance integral of the natural Hf, as shown in Table 8, thanks to ¹⁷⁸Hf-¹⁷⁹Hf-¹⁸⁰Hf and not to the major poisoning isotope ¹⁷⁷Hf. The TRIPOLI-4 calculation of Hf absorber worth in EOLE and AZUR experiments is improved by 0.8% compared to the JEFF-3.0-based calculation.

Table 8: Comparison of Hf capture in JEF-2, JEFF-3.0-JENDL-3.3 and the new JEFF-3.1 evaluations

Hf evaluation	JEF-2.2	JEFF-3.0 (JENDL-3.3)	JEFF-3.1
σ ₂₂₀₀ (barn)	102.7	104.9	104.2
lγ (barn)	1 989.1	1 993.9	1 968.7

The thermal scattering law library contains nine evaluations. Except ⁹Be and H in CH₂ (polyethylene) originating from JEFF-3.0, these files are new evaluations. In 2003, work started at IKE for the re-evaluation of $S(\alpha,\beta)$ for H in H₂O, D in D₂O and H in ZrH₃ as a function of temperatures (Trkov, 2004). The improvement includes updating of models and a denser grid for both momentum transfer α and energy transfer β parameters. The evaluated thermal scattering law for water was checked against available experimental measurements of the total and the double differential cross-sections. The improvement due to JEFF-3.1 is observed, particularly at low energies as shown in Figure 9.

Figure 9: Comparison of H₂O measured total cross-section with IKE (JEFF-3.1) and ENDF/B-VI

A strong improvement for delayed neutron data was implemented in JEFF-3.1. Eight groups of precursors are represented (instead of six in previous libraries), allowing the explicit description of the longest-lived precursors, and a unique set of mean lifetimes $\tau_i = 1/\lambda_i$ for any fissile isotope (Spriggs, 2002). Moreover, the delayed neutron fractions β_i were improved, particularly for ²³⁵U fissions that give a lower β_{eff}^{UOX} value [in agreement with our JEF-2 analysis of MISTRAL1 measurements which suggested a reduction by -2.4% ± 1.6% (Litaize, 2002)].

The JEFF-3.1 Fission Yields library JEFF-3.1/NFY includes independent and cumulative yields for neutron-induced fission of Th, U, Np, Pu, Am and Cm isotopes. This library is mainly based on the UKFY-3.6 file (Mills, 2004), though some improvements were introduced as a result of CEA feedback on integral experiments (Sérot, 2004). Therefore, the ¹⁴⁸Nd yields were improved with a reduction in ²³⁹Pu fission yields (¹⁴⁸Nd, which should be the reference burn-up indicator, is systematically overestimated in French LWR PIE by 1-2% using JEF-2 yields).

The JEFF-3.1 library was released in May 2005 (NEA, 2006). The library CEA2005-version0 of the new product APOLLO2.8 (Loubière, 1999) was immediately processed from the JEFF-3.1 file. Accurate APOLLO2.8 calculations were performed to validate LWR fuel inventory prediction. The analysis of Gravelines3 chemical assays indicated that actinide concentrations were predicted within experimental uncertainty (except ²³⁸Pu and the unimportant ²⁴⁶Cm minor actinide), as shown in Table 9 (Koning, 2008). Compared to JEFF-3.0, new improvements are obtained on ²³⁵U depletion, ²³⁹Pu formation and ²⁴¹Am-^{242m}Am build-up.

Gravelines 3 rods: 60 GWd/t ²³⁵ U 4.5% (w/o)	C/E – 1 (%) JEF-2.2	C/E – 1 (%) JEFF-3.1	Experimental uncertainty (1σ)
²³⁴ U/ ²³⁸ U	1.8	4.3	3.0
²³⁵ U/ ²³⁸ U	4.6	2.1	3.5
²³⁶ U/ ²³⁸ U	-4.2	-0.7	0.6
²³⁷ Np/ ²³⁸ U	-6.5	-1.3	3.2
²³⁸ Pu/ ²³⁸ U	-10.2	-9.0	3.7
²³⁹ Pu/ ²³⁸ U	1.4	0.4	1.3
²⁴⁰ Pu/ ²³⁸ U	-0.7	0.4	1.1
²⁴¹ Pu/ ²³⁸ U	-2.3	-3.0	1.6
²⁴² Pu/ ²³⁸ U	-8.6	-3.1	2.8
²⁴¹ Am/ ²³⁸ U (EOC)	5.8	0.1	5.0
^{242M} Am/ ²³⁸ U	-21.6	2.3	7.1
²⁴³ Am/ ²³⁸ U	-8.7	-2.4	4.4
²⁴⁴ Cm/ ²³⁸ U	-11.7	-5.8	5.9
²⁴⁵ Cm/ ²³⁸ U	-17.8	-17.9	7.0
²⁴⁶ Cm/ ²³⁸ U	-29.2	-32.2	9.6
²⁴⁷ Cm/ ²³⁸ U	-16.0	-1.3	11.7
¹⁴³ Nd/ ²³⁸ U	1.4	-0.7	1.0
¹⁴⁴ Nd/ ²³⁸ U	-2.1	-0.5	2.3
¹⁴⁵ Nd/ ²³⁸ U	-0.4	-0.4	1.1
¹⁴⁶ Nd/ ²³⁸ U	0.9	1.3	1.8
¹⁴⁸ Nd/ ²³⁸ U	1.5	1.4	1.5
¹⁵⁰ Nd/ ²³⁸ U	0.7	0.7	1.8

Table 9: Calculation/experiment comparison of actinide concentration in Gravelines PWR SNF

The validation of critical systems was carried out with Monte Carlo continuous-energy calculations [TRIPOLI-4 (Hugot, 2008) and MCNP]. The homogeneous cores with regular LWR lattices in EOLE experiments were calculated with both APOLLO2 2D (Bernard, 2005) and TRIPOLI-4 (Litaize, 2006). Both buckling B_m^2 and critical K_{eff} measurements enhanced the following conclusions:

- For UOX cores the reactivity is perfectly predicted $\Delta K_{eff} = +120 \pm 150$ pcm (it was overestimated by +300 pcm using JEF-2 and underestimated by -150 pcm using JEFF-3.0).
- For MOX cores (MISTRAL2, MISTRAL3), K_{eff} overestimation is still observed. Compared to JEF-2 the reactivity is slightly increased using JEFF-3.1 due to positive components (²³⁸U = 200 pcm, ²³⁹Pu = 140 pcm, ²⁴⁰Pu = 160 pcm, H₂O = 150 pcm), which are not exactly compensated by negative components (²⁴¹Pu = -180 pcm, ²⁴¹Am = -300 pcm, Zr = -80 pcm). Concerning mixed-loading cores, MH1.2 is reasonably predicted using JEFF-3.1: ΔK_{eff} = +280 ± 200 pcm.
- These K_{eff} results were confirmed by the TRIPOLI-4/JEFF-3.1 analysis of some ICSBEP benchmarks data (Sublet, 2005). The MCNP-4C3 calculation by the NRG team of the main ICSBEP benchmarks gave consistent results and enhanced the correct K_{eff} value obtained for LEU-COMP-THERM LWR-type benchmarks (Marck, 2005): Figures 10 and 11 show that the criticality of CEA Valduc experiments (LCT 07 and 39) are more accurately predicted using JEFF-3.1.
- MCNP-JEFF-3.1 calculations of highly-enriched uranium also highlighted satisfactory results for fast and intermediate spectra, with a slight improvement compared to JEFF-3.0 (Figure 12).

Figure 10: JEFF-3 calculation results of LEU-COMP-THERM benchmarks

Figure 11: JEFF-3 calculation results of LEU-COMP-THERM benchmarks

Figure 12: JEFF-3 calculation of HEU benchmarks with a fast or intermediate spectrum

The K_{eff} validation for FBR was performed using MASURCA critical experiments (Tommasi, 2006). The calculation/experiment comparison using either JEF-2 or JEFF-3.1 is summarised in Table 10. The MASURCA 1B result confirmed the improvement in uranium fast systems linked to JEFF-3.1, with a reactivity which is no longer overestimated. Concerning MOX cores ZONA2 and MUSE, the reactivity is reasonably predicted.

Core	1B	1A′	ZONA 2A	ZONA 2B	MUSE-4
Fuel	U	Pu	UO ₂ -PuO ₂	UO ₂ -PuO ₂	UO ₂ -PuO ₂
Mod/coolant	Graphite	Graphite	Sodium	Sodium	Sodium
Reflector	U _{app} metal	U _{app} metal	Fertile blanket	Na/SS	Na/SS
JEF-2.2	+512	+165	-384	-104	-200
JEFF-3.0	-407	+107	-41		
JEFF-3.1	-80	+478	+387	-167	-182

Table 10: C/E bias (in pcm) on various MASURCA FBR cores

The ERANOS2 (Ruggiéri, 2006) analysis of PROFIL and PROFIL-2, which are irradiation experiments of separated isotopes in the PHENIX FBR reactor (Tommasi, 2008), has demonstrated that JEFF-3.1 (n, γ) cross-sections are satisfactory for major actinides, except for ²⁴¹Pu capture which is overestimated by 8%.

Chapter 4: New evaluations for JEFF-3.1.1

The validation results of JEFF-3.1, summarised previously, have shown that ²³⁸Pu build-up was inaccurately predicted, as was LWR-MOX reactivity. Improved evaluations were thus recommended for ²³⁷Np (Bernard, 2006b) and ²³⁹Pu (Bernard, 2006c). The JEFF Group approved this recommendation, and these evaluations were processed and implemented in Version 2 of the CEA2005 library.

However, the K_{eff} calculation of the fresh core of large French PWRs pointed out that K_{∞} of actual LWR-UO₂ lattices was slightly underestimated. Improved evaluations of ¹⁶O and ^{91,96}Zr were therefore carried out in agreement with recent differential measurements (Bernard, 2007). These evaluations were included in the new version CEA2005v3 of the APOLLO2.8 library.

Furthermore, PWR and BWR cycle follow-up performed by CEA (Douce, 2008) and Areva-NP (German, French and US calculations of domestic LWRs) highlighted a slight overestimation trend for reactivity loss with fuel burn-up, which is consistent with SNF oscillation results in MINERVE (Bernard, 2006a). To correct this trend, seven improved FP evaluations were proposed for inclusion in the new file: JEFF-3.1.1. The full list of updates is provided in Table 11, and Table 12 displays an additional list of corrected evaluations which include smaller modifications.

Isotope	Documentation	Modifications
²³⁷ Np	JEFDOC1144/1174	JEFF-3.0
²³⁹ Pu	JEFDOC1158	New MF1(MT456) & MF2(MT18,102)
¹⁶ O	JEFDOC1207/1226	New (MT800)
⁹¹ Zr	JEFDOC1208/1226	New (MT102)
⁹⁶ Zr	JEFDOC1208/1226	New (MT102)
⁹³ Zr	JEFDOC1238	New (MT102)
⁹⁹ Tc	JEFDOC1238	New (MT102)
¹⁰³ Ru	JEFDOC1238	New (MT102)
¹³⁵ Cs	JEFDOC1238	New (MT102)
¹⁴⁷ Pm	JEFDOC1238	New (MT102)
¹⁴⁸⁹ Pm	JEFDOC1238	New (MT102)
¹⁵⁴ Eu	JEFDOC1238	New (MT102)

Table 11. Updated isotopes in JEFF-3.1.1

Isotope	Modifications
⁵² Cr	MF4(MT2)
³⁵ Cl	NK(MF12)=NK(MF13)
^{191,193} lr	NK(MF14)=NK(MF12&13)
^{127,129}	Modif MF6(MT5)
¹⁰³ Rh	Modif MF6(MT5)
²³³ U	$\lambda_{i=4}$ *10
⁴⁶ Ca	MF3(MT1)=0<1keV
⁵⁶ Fe	Neut. Inelastic thresh. MF12
⁹⁵ Mo	P _{Legendre} description

Table 12. Corrected evaluations in JEFF-3.1.1

4.1 ²³⁷Np evaluation

The recent JENDL-3.3 evaluation has been introduced with a new ²³⁷Np evaluation in JEFF-3.1. However, this evaluation was based on a recent Japanese thermal cross-section measurement carried out using a challenging activation technique. To the contrary of the previous JEFF-3.0 evaluation, this JEFF-3.1 evaluation led to inaccurate prediction of ²³⁸Pu build-up in LWR spent fuel:

236U/238U:	(C-E)/E = -1% ± 1%
237Np/238U:	(C-E)/E = -1% ± 3%
²³⁸ Pu/ ²³⁸ U:	(C-E)/E = -8% ± 3%

Since ^{237}Np content is well predicted, these chemical analysis results demonstrated that ^{238}Pu underestimation at low burn-ups is due to ^{237}Np capture cross-section.

This conclusion was confirmed by the ²³⁷Np reactivity worth measurement in the OSMOSE experiment (Bernard, 2006): compared to the JEFF-3.0 calculation, the ²³⁷Np reactivity worth was degraded by -5% using the new JEFF-3.1 evaluation. It was concluded that this ²³⁷Np worth underestimation was due to an inadequate capture value:

JEFF-3.1:	σ ₂₂₀₀ = 162 b
JEF-2.2:	σ ₂₂₀₀ = 181 b
Mughabghab:	$\sigma_{2200} = 176 \text{ b} \pm 3 \text{ b}$
Mini-Inca:	$\sigma_{2200} = 180 \text{ b} \pm 5 \text{ b}$

The 10% underestimation of JEFF-3.1 $^{\rm 237}{\rm Np}(n,\gamma)$ cross-section seems to be due to incorrect values of gamma peak intensities inferred by the pandemonium effect of the $^{\rm 238}{\rm Np}$ nucleus. Indeed, this underestimation was confirmed by the 2003 measurement in the Mini-Inca experiment at the Institute Laue-Langevin (Dupont, 2006). Hence, adoption of the Derrien evaluation was recommended for the final JEFF-3.1.1 file.

4.2 ²³⁹Pu evaluation

The analysis of the K_{eff} multiplication factor of 100% MOX cores and plutonium solutions showed a systematic discrepancy between JEFF-3.1 calculation and experiment (Marck, 2005). A systematic overestimation of K_{eff} values, using Monte Carlo reference calculations, was observed in the analysis of critical experiments.

Plutonium-solution-thermal (PST) benchmarks of the ICSBEP database showed a systematic overestimation from +200 to +1 200 pcm as a function of the 239 Pu concentration (see Figure 13). As 239 Pu concentration infers a strong neutron spectrum hardening, the average overestimation by about +700 pcm \pm 200 pcm in the low 239 Pu concentration range ($C_{\rm Pu}$ < 80 g/L) indicates that the η = v. $\sigma_{\rm f}/\sigma_{\rm a}$ value should be revised in the subthermal neutron range.

Figure 13: MCNP-JEFF-3.1 analysis of critical Pu solutions

Critical LWR-MOX lattices in the EOLE facility were investigated during the MISTRAL and BASALA experimental programmes (Vaglio-Gaudard, 2006, 2007). In addition to the poorly predicted plutonium ageing, TRIPOLI-4-JEFF-3.1 calculations indicated a $K_{\rm eff}$ overestimation of about +300 pcm for various moderation ratios or void fractions (Table 13).

Table 13: TRIPOLI-4-JEFF-3.1 analysis of EOLE 100% MOX cores

EOLE mock-up	Pu ageing	Mod ratio or void	(C-E) ± δE (pcm)
MH1.2 (PWR-MOX mixed core)	4 years	V _{H2O} /V _{MOX} =1.2	280 ± 250
MISTRAL-2 (PWR-MOX)	8 years	V _{H20} /V _{MOX} =1.7	630 ± 250
MISTRAL-3 (PWR-MOX)	10 years	V _{H20} /V _{MOX} =2.1	710 ± 250
BASALA-Hot (BWR-MOX)	12 years	42% void	610 ± 250
BASALA-Cold (BWR-MOX)	13 years	0% void	700 ± 250
FUBILA-Hot (BWR-MOX)	1 year	0% void	250 ± 250

Moreover, EOLE measurements of the isothermal temperature coefficient for MOX lattices were performed at room temperature (20-80°C in MISTRAL2 and MISTRAL3) and under hot operation conditions (from 20°C up to 300°C in the CREOLE experiment). The calculation of these experiments using both JEF-2.2 and JEFF-3.1 libraries pointed out (Erradi, 2003):

- a systematic underestimation of the MTC under cold conditions by (-2.0 ± 0.3) pcm/°C;
- a well-assessed MTC under hot conditions (+1.0 ± 2.0)pcm/°C.

Sensitivity analysis of physical phenomena has shown that the negative error in the low temperature range is linked to the thermal spectrum shift effect, which is strongly dependent on the subthermal and thermal shapes of ²³⁹Pu capture and fission cross-sections.

Therefore, an improved ²³⁹Pu evaluation was undertaken (Bernard, 2008a), which accounts for the observed integral experiment trends. The comparison of this evaluation to previous JEFF-3.1 and to experimental data is plotted in Figures 14 and 15 respectively for (n,γ) and (n,f) cross-sections in the thermal range.

These cross-section modifications were not sufficient to explain the $K_{\rm eff}$ overestimation of Pu system calculation. Indeed, $v_{\rm p}$ needed to be revised, and a phenomenological formalism was applied up to 20 eV. The comparison of measured prompt multiplicity both to JEFF-3.1 and to our evaluation (plotted in red) in Figure 16 demonstrates that our proposal adopted in JEFF-3.1.1 is more consistent with Gwin differential measurements, particularly on the thermal wing of the large $E_{\rm g} = 0.3$ eV resonance.

Figure 14: Experimental, JEFF-3.1 and JEFF-3.1.1 ²³⁹Pu capture cross-section

Figure 15: Experimental, JEFF-3.1 and JEFF-3.1.1 ²³⁹Pu fission cross-section

Figure 16: Comparison of measured $\nu_{\rm p}$ multiplicity with JEFF-3.1 and JEFF-3.1.1 evaluations

This new $^{\scriptscriptstyle 239}\mbox{Pu}$ evaluation allowed the following improvements:

- K_{eff} MOX decreased by -150 pcm;
- K_{eff} of Pu solutions decreased by about -400 pcm;
- the MOX reactivity temperature coefficient prediction improved by 0.3 pcm/°C.

4.3 ¹⁶O evaluation

In 2005, Harrisopoulos, et al. performed new measurements on ¹³C(α ,n)¹⁶O. The velocity of the incident α particle increased from 0.8 MeV to 8.0 MeV due to the analysis of the inverse reaction ¹⁶O(n, α). In 2007, Giorginnis performed a direct measurement of ¹⁶O(n, α_0) at GELINA (IRMM) and confirmed the Harrisopoulous values below 6 MeV. These two differential measurements underline the need to decrease the JEFF-3.1 cross-section by about 30% (see Figure 17) (Noguère, 2007). Moreover, the validation of helium release in Al₂O₃ pins loaded in PWR seems to highlight the great improvement linked to this new JEFF-3.1.1 evaluation.

The K_{∞} calculated value then increases by 100 pcm for LWR up to 120 pcm for FBR composed with UO₂ or MOX fuels (Bernard, 2007).

Figure 17: $^{16}O(n,\alpha)$ cross-section in JEFF-3.1.1

4.4 Zr evaluations

In the Segrè diagram, zirconium isotopes are located near the neutron magic line N=50. Thus, the complete neutron shell of such nuclides implies very small neutron capture cross-sections: 141 mb (⁹⁰Zr, abundance 51.45%), 6.9 b (⁹¹Zr, ab. 11.22%), 621 mb (⁹²Zr, ab. 17.15%), 260 mb (⁹⁴Zr, ab. 17.38%) and 5.8 b (⁹⁶Zr, ab. 2.80%) for natural zirconia in the thermal range. The JEFF-3.1 thermal and resonance integral values for natural Zr are out of uncertainty bands as pertains to the BNL recommended values. This capture overestimation is mainly due to the huge increase in the 292.41 eV resonance capture of ⁹¹Zr from JEF-2.2 (J = 2; $\Gamma_{\gamma} = 0.1$ meV) to JEFF-3.1 (J = 3, $\Gamma_{\gamma} = 0.17$ meV) (Bernard, 2007). Due to the large amount of Zr in LWRs (zircaloy fuel cladding) the absorption of Zr isotopes amounts to 600 pcm in a typical PWR K_{eff} neutron balance.

Natural zirconium differential measurements were performed at the RPI laboratory (see Figure 18). The results of this experiment are the basis for the new JEFF-3.1.1 evaluations for ⁹¹Zr and ⁹⁶Zr (Noguère, 2007a). The reduction of capture integral values by about 10% leads to an increase in the multiplication factor by 50 pcm for PWR up to 100 pcm for BWR.

Figure 18: ^{Nat}Zr(n,γ) cross-section in JEFF-3.1.1

4.5 FP evaluations

Seven fission product cross-sections were revisited (Bernard, 2008) to account for feedback from SNF oscillations (Douce, 2008; Leconte, 2007) and recent OECD/WPEC Subgroup23 work (NEA, 2009). Thus, ⁹³Zr, ¹⁰³Ru (Figure 19), ¹³⁵Cs, ^{148g}Pm and ¹⁵⁴Eu (Figure 20) evaluations were adopted from WPEC SG23. The JEFF-3.1 evaluation of the poisoning isotope ¹⁴⁷Pm was found satisfactory in the FBR spectrum, but was slightly modified in the thermal range.

The ⁹⁹Tc evaluation was improved in agreement with its reactivity worth measurement in MINERVE and the new thermal capture value of 21 b proposed by Weil (2008). Moreover, the neutron width of the first 5.58 eV resonance was reduced within its 1σ uncertainty margin (see Figure 21).

The bulk poisoning worth of a fission product is sensitive first to its fission yield, lifetime and neutron capture cross-section, and secondly to its mother by activation or radioactive decay. Then, each fission product induces different reactivity worth components at beginning of cycle and during reactor cycle length. The contribution of each new FP evaluation in the JEFF-3.1.1 file on the modification of K_{eff} ($\delta Keff_{BOC}$) and reactivity swing ($\delta \Delta \rho_{cycle}$) is summarised in the table below (PWR Bu_{BOC} = 20 GWd/t, Bu_{EOC} = 35 GWd/t):

FP evaluation	δKeff _{BOC}	δΔρ _{cycle}
¹⁰³ Ru	15 pcm	15 pcm
⁹⁹ Tc	6 pcm	3 pcm
^{148g} Pm	90 pcm	85 pcm
⁹³ Zr	21 pcm	11 pcm
¹⁴⁷ Pm	4 pcm	2 pcm
¹⁵⁴ Eu	18 pcm	11 pcm
¹³⁵ Cs	6 pcm	3 pcm
Total	+160 pcm	+130 pcm

Therefore, new FP evaluations in the JEFF-3.1.1 library increase the BOC activity by about 160 pcm and the reactivity swing for LWR equilibrium cycle by about 130 pcm, in agreement with the experimental information from PWR and BWR cycle follow-up.

Figure 19: 103 Ru(n, γ) (T_{1/2} = 39 d) cross-section in JEF(F)-2.2/3.1.0 and WPEC23

Figure 20: 154 Eu(n, γ) (T_{1/2} = 8.6 y) cross-section in JEF(F)-2.2/3.1.0 and WPEC23

Figure 21: 99 Tc(n, γ) (T_{1/2} = 2.1^{E5} y) cross-section in JEF(F)-2.2/3.1.0/3.1.1

THE JEFF-3.1.1 NUCLEAR DATA LIBRARY - © OECD/NEA 2009

Chapter 5: The recommended CEA2005v4 library for APOLLO2.8

The processing of these JEFF-3.1.1 evaluations, added to JEFF-3.1 evaluations for other isotopes, results in the recommended library CEA2005V4.1.1 for APOLLO2.8.

A slight modification has been undertaken on the ²³⁵U and ²³⁹Pu incident neutron fission yields files in order to account for the PIE interpretation (¹⁰³Rh and ¹⁰⁹Ag build-up overestimations with JEFF-3.1 files). Thus, four independent fission yields are modified within their 1 σ uncertainty:

$^{235}U \rightarrow {}^{103}Nb$	From 1.7781E-2 to 1.7021E-2 (back to JEF-2.2 value)
235 U \rightarrow 88 Kr	From 1.6512E-2 to 1.7272E-2 (to keep fission yields normalised)
239 Pu $\rightarrow ^{109}$ Rh	From 2.3799E-3 to 0.3339E-3 (back to JEF-2.2 value)
239 Pu \rightarrow 142 Ba	From 3.0401E-2 to 3.2447E-2 (to keep fission yields normalised)

The processing tool GALILEE.V0 (Coste-Delclaux, 2008) includes the NJOY-259 (Macfarlane, 2000) code for the resolved resonance range (RRR) and the CALENDF-2005 (Sublet, 2006) code for the unresolved resonance region (URR). It allows performing "natural isotopes" such as ZRNAT using a validated mutual shielding approach with an isotopic probability table formalism. Energies released by fission are taken directly from ENDF files. The CEA2005.G281.V4.1.DIRECT binary file (Mengelle, 2008) includes 427 isotopes, mainly from JEFF-3.1 evaluations as shown in Table 14. Probability tables for mutual shielding are included in a second binary file CEA2005.V4.1.UNIVSH.TP.

The recommended depletion chain, using the JEFF-3.1.1 Decay Data (File 8) (Kellet, 2007), involves 160 nuclides (Mengelle, 2008a). The adoption of such a detailed FP chain enables avoiding the utilisation of the approximate collapsed pseudo-FP method. The validation of this FP chain against a full 683 depletion chain (up to 60 GWj/t for LWR and FBR) allowed establishing that 99.9% of the total FP poisoning is accounted for by this CEA2005v4 chain. Furthermore, this chain accounts for poisoning kinetics (¹³⁵I for instance) and long cooling time (¹⁵¹Eu build-up).

Moreover, the JEFF-3.1.1/DD library improves the previous JEFF-3.1 file mainly based on NUBASE (Audi, 2003) by taking into account the total absorption gamma-ray spectrometry measurements (Greenwood, 1997) of several fission products. Therefore, β and γ decay heat are now consistently predicted with measured values for ²³⁵U and ²³⁹Pu fission pulse (Huynh, 2007), as well as ²³⁸U and ²⁴¹Pu fission pulse (Mills, 2007). For longer cooling times (two to six years in PWR assembly calorimetric measurements), the decay heat is calculated to within 5% accuracy (Mills, 2007).

The JEFF-3.1.1/GP/²⁴¹Am neutron file proposes a smoothed energy-dependent isomeric ratio: $^{241}\text{Am}(n,\gamma)^{242g/m}\text{Am}$. In order to account for the incident neutron energy dependence, a new "procedure" called FACTEUR_BRANCHEMENT_S was achieved in APOLLO2. Figure 22 shows the optimised americium chain (the ^{242g}Am isotope is not described).

AUSISY	Ca40_CaH2	CM244	ES253	H2_D2O	KR84	N/58	PU236	SB126	SR88	U234
AC225	CA42	CM245	ES254	H20	KR85	NI59	PU237	SC45	SR89	U235
AC226	Ca42_CaH2	CM246	ES255	H3	KR86	N/60	PU238	SE74	SR90	U236
AC227	CA43	CM247	EU151	HE3	LA138	NI61	PU239	SE76	TA181	U237
AG107	Ca43 CaH2	CM248	EU152	HE4	LA139	N/62	PU240	SE77	TA182	U238
AG109	CA44	CM249	EU152M	HF174	LA140	N/64	PU241	SE78	TB159	VNAT
AG110M	Ca44 CaH2	CM250	EU153	HF176	LI6	NP235	PU242	SE79	TB160	W182
AG111	CA48	CNAT	EU154	HF177	LI7	NP236	PU243	SE80	TC99	W183
AL27	Ca48 CaH2	CO58	EU155	HF178	LU175	NP237	PU244	SE82	TE120	W184
AM241	CAH2	CO59	EU156	HF179	LU176	NP238	PU246	S/28	TE122	W186
AM242	CANAT	CO60	EU157	HF180	MG24	NP239	RA223	S/29	TE123	XE124
AM242M	CD106	CR50	F19	HENAT	MG25	016	RA224	S/30	TE124	XE126
АМ243	CD108	CR52	FE54	HG196	MG26	016 TH20	RA225	SINAT	TE125	XE128
AM244	CD110	CR53	FE56	HG198	MGNAT	017	RA226	SM144	TE126	XE129
AM244M	CD111	CR54	FE57	HG199	MN55	OSNAT	RB85	SM147	TE127M	XE130
AR36	CD112	CS133	FE58	HG200	MO100	P31	RB86	SM148	TE128	XE131
AR38	CD113	CS134	FENAT	HG201	MO92	PA231	RB87	SM149	TE129M	XE132
AR40	CD114	CS135	FM255	HG202	MO94	PA232	RE185	SM150	TE130	XE133
AS75	CD115M	CS136	GANAT	HG204	MO95	PA233	RE187	SM151	TE131M	XE134
AU197	CD116	CS137	GD152	HO165	MO96	PB204	RH103	SM152	TE132	XE135
B10	CE140	CU63	GD153	1127	MO97	PB206	RH105	SM153	TH227	XE136
B11	CE141	CU65	GD154	1128	MO98	PB207	RU100	SM154	TH228	Y89
BA130	CE142	D20	GD155	1129	MO99	PB208	RU101	SN112	TH229	Y90
BA132	CE143	DIF	GD156	1130	MONAT	PD102	RU102	SN114	TH230	Y91
BA134	CE 144	DY160	GD157	1131	N14	PD104	RU103	SN115	TH232	YB170
BA135	CF249	DY161	GD158	1135	N15	PD105	RU104	SN116	TH233	YB171
BA136	CF250	DY162	GD160	IN113	NA22	PD106	RU105	SN117	TH234	ZN64
BA137	CF251	DY163	GE70	IN115	NA23	PD107	RU106	SN118	T146	ZR ZRH
BA138	CF252	DY164	GE72	IR191	NB93	PD108	RU96	SN119	T147	ZR90
BA140	CF253	DY165	GE73	IR193	NB94	PD110	RU98	SN120	T148	ZR91
BE9	CF254	ER162	GE74	IRNAT	NB95	PIM147	RU99	SN122	T149	ZR92
BI209	CH2	ER164	GE76	K39	ND142	PM148	S32	SN123	T/50	ZR93
BK247	CL35	ER166	GRAPH	K40	ND143	PIM148M	S33	SN124	TINAT	ZR94
BK249	CL37	ER167	H ZrH	K41	ND144	PM149	S34	SN125	TLNAT	ZR95
BK250	CLNAT	ER168	H1	KNAT	ND145	PM151	S36	SN126	TM169	ZR96
BR79	CM240	ER169	H1 CAH2	KR78	ND146	PR141	SB121	SNAT	TM170	ZRH
BR81	CM241	ER170	H1 CH2	KR80	ND147	PR142	SB123	SR84	TM171	ZRNAT
C TCH2	CM242	ER171	H1 H2O	KR82	ND148	PR143	SB124	SR86	U232	
						DTNIGT				

Table 14: CEA2005.V4.1 library content

Figure 22: Americium standard depletion chain

Chapter 6: Validation of JEFF-3.1.1 and CEA2005v4

The precise validation of JEFF-3.1.1 was carried out using reference calculations:

- TRIPOLI-4 continuous-energy Monte Carlo for fissile solutions, LWR mock-up experiments and fresh PWR cores;
- APOLLO2.8 accurate calculations (Santamarina, 2008) [2-D heterogeneous MOC (Santandrea, 2005) and SHEM refined mesh (Hfaiedh, 2005)] for PIE and SNF reactivity worth.

6.1 K_{eff} of fresh UO₂ core

In order to validate the JEFF-3.1.1 calculation of UO_2 lattice reactivity, the LWR-type regular cores investigated in EOLE were analysed: EPICURE-UH1.2 and MISTRAL1 cores. These experiments utilise PWR-type fuel pins (3.7% ²³⁵U-enriched) arranged respectively in 1.26 and 1.32 cm square pitch. The criticality of these cores is obtained through critical soluble boron concentration. The TRIPOLI-4/ experiment comparison is shown in Table 15. The slight overestimation of the K_{eff} in these EOLE cores is not confirmed by the average C/E obtained in the analysis of about 100 LEU cores from the Handbook of International Criticality Safety Benchmark Experiments (ICSBEP). Moreover, Table 15 indicates that the K_{eff} is also well predicted for the first core of the French N4 PWR reactor under hot conditions.

Experiment	Square pitch	V _{H20} /V _{UOX}	K _{eff} ^{AP2} – K _{eff} ^{exp}	1σ*
UH1.2	1.26 cm	1.3	+250 pcm	180 pcm
MISTRAL1	1.32 cm	1.7	+180 pcm	150 pcm
LEU-Comp-Therm	100 critical configurations		-60 pcm	100 pcm
N4: PWR-1450MWe	1.26 cm	2.0 (Hot)	+160 pcm	300 pcm

Table 15: Calculation/experiment comparison on the K_{eff} of EOLE UO₂ regular cores

* Experimental uncertainty including residual core reactivity, boron concentration and technological uncertainties.

6.2 K_{eff} of Pu solutions and MOX cores

We analysed the various 100% MOX experiments performed in EOLE since 1993, using the same MOX 7%Pu fuel pins: these successive MH1.2, MISTRAL2 and MISTRAL3 experiments were carried out respectively in 1993, 1997 and 1999.

The material buckling B_m^2 of the regular lattice was measured in each core. The APOLLO2.8/experiment comparison presented in Table 16 points out a slight K_{eff} overprediction, which increases with Pu ageing.

Experiment	Square pitch	V _{H20} /V _{MOX}	K _{eff} ^{AP2} – 1	1σ*
MH1.2	1.26 cm	1.3	-102 pcm	350 pcm
MISTRAL2	1.32 cm	1.7	+302 pcm	330 pcm
MISTRAL3	1.39 cm	2.1	+536 pcm	300 pcm

Table 16: Calculation/experiment comparison of MOX lattice reactivity (B_m² measurement)

* Experimental uncertainty including buckling measurement uncertainty and technological uncertainties.

The TRIPOLI-4/JEFF-3.1.1 calculation of the regular core MISTRAL2, as well as the BWR mock-up BASALA, confirmed the slight $K_{\rm eff}$ overestimation for 100% MOX cores.

The K_{eff} calculation of Pu solutions encountered in criticality safety was validated against critical experiments from the ICSBEP database. Compared to previous results obtained with JEFF-3.1, the calculations based on JEFF-3.1.1 are quite satisfactory. The calculation/experiment is summarised in Table 17, where ENDF/B-VII calculation results are also reported. The reactivity of LWR-MOX lattices used in Pu recycling, as well as in Pu solutions, is strongly overestimated by ENDF/B-VII calculations (more than 1 000 pcm under the BWR cold conditions of BASALA-C). The C/E discrepancy is more acceptable using JEFF-3.1.1.

Γable 17: C/E bias	(pcm) or	n multiplication	factor of	of Pu sy	ystems
--------------------	----------	------------------	-----------	----------	--------

	ICSBEP Pu-Sol-Therm C _{Pu} < 80 g/l	ICSBEP Pu-Sol-Therm C _{Pu} > 80 g/l	EOLE MISTRAL2 PWR core	EOLE BASALA-C BWR core
JEFF-3.1.1	$+250 \pm 200$	$+50 \pm 200$	+650 \pm 220*	+690 ± 220*
ENDF/B-VII	+700 ± 200	+340 ± 200	+950 ± 220*	+1 180 ± 220*

* 1σ experimental uncertainty (technological uncertainties are the main components).

6.3 Depletion calculation and spent fuel inventory

APOLLO2.8 depletion calculations of PWR and BWR assemblies were carried out, using a precise reactor history follow-up (Chabert, 2000a). Actinide and FP isotopic concentrations are compared to chemical analyses, using a $^{1}Nd/^{23}U$ isotopics ratio as local burn-up indicators. The comparison between JEFF-3.1.1 calculation and experiment is summarised in Table 18 for the PWR-900 Gravelines5 case.

	ENDF/B-VII	JEFF-3.1.1	ΔE/E (%)
²³⁴ U/ ²³⁸ U	1.2	1.7	± 2.0
²³⁵ U/ ²³⁸ U	9.9	8.0	± 6.1
²³⁶ U/ ²³⁸ U	-0.1	-0.9	± 1.1
²³⁷ Np/ ²³⁸ U	1.0	1.4	± 2.7
²³⁸ Pu/ ²³⁸ U	-9.9	-3.9	± 4.1
²³⁹ Pu/ ²³⁸ U	6.5	5.7	± 1.6
²⁴⁰ Pu/ ²³⁸ U	2.5	4.2	± 1.3
²⁴¹ Pu/ ²³⁸ U	2.1	1.7	± 1.7
²⁴² Pu/ ²³⁸ U	-6.4	-2.5	± 3.9
²⁴¹ Am/ ²³⁸ U	4.8	2.4	± 5
²⁴¹ Am/ ²³⁸ U EOC	28.2	8.7	± 9
^{242m} Am/ ²³⁸ U	6.9	7.2	± 7.0
²⁴³ Am/ ²³⁸ U	4.5	-0.2	± 5.5
²⁴³ Cm/ ²³⁸ U	-20.9	-19.9	± 12
²⁴⁴ Cm/ ²³⁸ U	-4.4	-8.4	± 10
²⁴⁵ Cm/ ²³⁸ U	10.8	-5.4	± 11
²⁴⁶ Cm/ ²³⁸ U	-8.4	-21.5	± 14
²⁴⁷ Cm/ ²³⁸ U	-10.7	-17.4	± 16
¹⁴³ Nd/ ²³⁸ U	3.1	2.1	± 1.1
¹⁴⁴ Nd/ ²³⁸ U	-3.7	-2.4	± 2.9
¹⁴⁵ Nd/ ²³⁸ U	-3.4	-0.7	± 1.5
¹⁴⁶ Nd/ ²³⁸ U	0.4	-0.4	± 2.4
¹⁴⁸ Nd/ ²³⁸ U	-1.0	0.2	± 2.1
¹⁵⁰ Nd/ ²³⁸ U	-1.0	-0.5	± 2.3

Table 18: (C-E)/E bias (%) for PWR spent fuel inventory (burn-up: 64 GWd/t)

This calculation/experiment comparison enhances important improvements:

- ²³⁸Pu is no longer underestimated (improvement by +5% compared to JEF-2, JEFF-3.1 and B-VII);
- ²³⁹Pu is less overestimated (improvement by -1%);
- ²⁴²Pu is no longer overestimated (improvement by +4%);
- ²⁴¹Am is accurately predict (the strong overestimation by 28% of ²⁴¹Am at end of cycle in B-VII and JEF-2 calculations is drastically reduced using the JEFF-3.1.1 library).

The comparison of the JEFF-3.1.1 calculation and measured isotopics ratio in the Gundremmingen BWR assembly is presented for actinide concentrations in Table 19 (Leconte, 2008). This table summarises the results in the lower sample (H = 200 mm) where the void fraction is small (about 1%). Therefore, the C/E comparison is reliable, because not dependent on the estimated value of the void operating parameter. These BWR results confirm the improvements stressed in PWR spent fuels. Furthermore, Table 19 emphasises the satisfactory prediction of ^{242m}Am build-up (on the contrary, JEF-2 and B-VII calculations show an underestimation by -20% and -12%, respectively).

Isotopic ratio	(C-E)/E ± 1σ (%)
²³⁵ U/ ²³⁸ U	5.1 ± 4.1
²³⁶ U/ ²³⁸ U	0.1 ± 1.6
²³⁷ Np/ ²³⁸ U	-4.5 ± 3.1
²³⁸ Pu/ ²³⁸ U	$\textbf{-2.6} \pm \textbf{4.4}$
²³⁹ Pu/ ²³⁸ U	$\textbf{3.0}\pm\textbf{0.9}$
²⁴⁰ Pu/ ²³⁸ U	2.3 ± 1.7
²⁴¹ Pu/ ²³⁸ U	1.1 ± 1.6
²⁴² Pu/ ²³⁸ U	-1.4 ± 4.4
²⁴¹ Am/ ²³⁸ U	-0.4 ± 2.1
^{242m} Am/ ²³⁸ U	-4.7 ± 2.3
²⁴³ Am/ ²³⁸ U	$\textbf{-1.4}\pm6.1$
²⁴³ Cm/ ²³⁸ U	-13.0 ± 5.9
²⁴⁴ Cm/ ²³⁸ U	$\textbf{0.9}\pm\textbf{8.2}$
²⁴⁵ Cm/ ²³⁸ U	$\textbf{-4.6} \pm \textbf{9.3}$
²⁴⁶ Cm/ ²³⁸ U	-19.5 ± 12.6
²⁴⁷ Cm/ ²³⁸ U	-9.8 ± 15.2
¹⁴³ Nd/ ²³⁸ U	0.6 ± 1.4
¹⁴⁴ Nd/ ²³⁸ U	-2.0 ± 2.3
¹⁴⁵ Nd/ ²³⁸ U	-0.2 ± 1.5
¹⁴⁶ Nd/ ²³⁸ U	-0.5 ± 1.8
¹⁴⁸ Nd/ ²³⁸ U	0.2 ± 1.8
¹⁵⁰ Nd/ ²³⁸ U	-0.4 ± 1.8

Table 19: (C-E)/E bias (%) for BWR actinide concentrations (burn-up: 33 GWd/t)

C/E comparison for fission product concentrations is summarised in Table 20. The results correspond to two samples with increasing void fractions 50% and 80%, with respective axial heights H = 815 and 3 420 mm. A satisfactory prediction within 5% accuracy is obtained for the concentration of important poisoning FP (included in top 20): ¹³³Cs, ¹⁴³Nd, ¹⁴⁵Nd, ¹⁴⁷Sm, ¹⁵⁰Sm, ¹⁵¹Sm, ¹⁵²Sm, ¹⁵³Eu, ¹⁵⁴Eu, ¹⁵⁵Eu, ¹⁵⁵Gd. The improvement is particularly significant for ¹⁵⁴Eu, ¹⁵⁴Gd, ¹⁵⁵Eu and ¹⁵⁵Gd concentrations, compared with previous C/E results based on JEF-2.2 [respectively +80%, +73%, +16% and +8% biases at 50 GWd/t (Courcelle, 2003)], thanks to the new ¹⁵⁴Eu and ¹⁵⁵Eu evaluations introduced in JEFF-3. Moreover, ¹⁵⁰Sm-¹⁵¹Sm-¹⁵²Sm calculated concentrations are improved ¹⁴⁹Sm evaluation (Courcelle, 2003).

6.4 Fuel reactivity loss versus burn-up

The reactivity worth of three SNF-UO₂ samples (extracted at mid-height from fuel pins irradiated five or six cycles in Cruas2 PWR) was measured by oscillation at the centre of the MINERVE LWR-UO2 block. Furthermore, three rod cuts were extracted from the Gundremmingen BWR assembly at increasing

lastonia ratio	H = 815 cm	H = 3 420 cm
isotopic ratio	Bu = 45 GWd/t	Bu = 30 GWd/t
¹⁴³ Nd/ ²³⁸ U	1.2 ± 1.3	0.2 ± 1.4
¹⁴⁴ Nd/ ²³⁸ U	-2.5 ± 2.6	-2.8 ± 2.7
¹⁴⁵ Nd/ ²³⁸ U	-0.4 ± 1.5	-0.9 ± 1.7
¹⁴⁶ Nd/ ²³⁸ U	$\textbf{-0.5}\pm1.9$	$\textbf{-0.5} \pm \textbf{1.8}$
¹⁴⁸ Nd/ ²³⁸ U	0.2 ± 1.8	0.2 ± 1.8
¹⁵⁰ Nd/ ²³⁸ U	-1.3 ± 1.3	$\textbf{-0.2} \pm \textbf{1.8}$
¹³³ Cs/ ²³⁸ U	-1.2 ± 1.6	0.5 ± 1.7
¹³⁴ Cs/ ²³⁸ U	$\textbf{-3.0}\pm\textbf{4.4}$	$\textbf{-5.9} \pm \textbf{3.9}$
¹³⁵ Cs/ ²³⁸ U	2.1 ± 2.6	7.5 ± 2.7
¹³⁷ Cs/ ²³⁸ U	-3.1 ± 1.7	-1.2 ± 1.8
¹⁴⁷ Sm/ ²³⁸ U	$\textbf{-4.6} \pm \textbf{2.6}$	$\textbf{-5.3} \pm \textbf{3.3}$
¹⁴⁹ Sm/ ²³⁸ U	4.5 ± 6.2	$\textbf{-0.5}\pm6.9$
¹⁵⁰ Sm/ ²³⁸ U	$\textbf{-0.8} \pm \textbf{1.8}$	$\textbf{-3.0} \pm \textbf{1.8}$
¹⁵¹ Sm/ ²³⁸ U	-1.6 ± 4.1	0.1 ± 5.4
¹⁵² Sm/ ²³⁸ U	-3.1 ± 1.8	$\textbf{-4.0} \pm \textbf{2.4}$
¹⁵³ Eu/ ²³⁸ U	$\textbf{4.8} \pm \textbf{1.8}$	$\textbf{3.8} \pm \textbf{2.1}$
¹⁵⁴ Eu/ ²³⁸ U	$\textbf{-4.3}\pm\textbf{3.5}$	-2.4 ± 4.9
¹⁵⁵ Eu/ ²³⁸ U	3.9 ± 2.2	$\textbf{3.4} \pm \textbf{2.6}$
¹⁵⁴ Gd/ ²³⁸ U	-7.1 ± 4.4	-11.4 ± 6.4
¹⁵⁵ Gd/ ²³⁸ U	$\textbf{0.7}\pm\textbf{8.4}$	

Table 20: (C-E)/E bias (%) for BWR fission product concentrations

heights (H = 750, 1 750, 3 355 mm) and oscillated at the centre of the LWR-UO2 block (Leconte, 2008). The APOLLO2.8/CEA2005v4 analysis provides a satisfactory prediction of the reactivity loss due to fuel burn-up. The C/E comparison, summarised in Table 21, points out the improvement linked to JEFF-3.1.1 data, compared to previous JEF-2.2 file.

Table 21: (C-E)/E $\pm \delta$ E/E on reactivity loss with burn-up (MINERVE oscillation of LWR rod cuts)

UOX 4.5%UOX 4.5%3 rod cuts 5- & 6-cycle3 rod cuts 4-cycle	
JEFF-3.1.1 +0.2 ± 1.3% +1.1 ± 2.0%	
JEF-2.2 +2.3 ± 1.3% +2.1 ± 2.0%	

Concerning the critical boron follow-up within PWR cycles, both JEFF-3.1.1 and B-VII calculations are satisfactory. However, experimental data from PIE and isotopic reactivity worth indicate that error compensation occurs in the B-VII calculation.

MINERVE oscillations of MOX spent fuels were also performed at the centre of the R1-MOX lattice (Pu 4%). After assembly irradiation in Dampierre2 PWR-900 MWe, two rod cuts were extracted after four cycles, and two rod cuts after five cycles (52 and 60 GWd/t respectively); these pins are located both in the MOX central zone $e_{p_u} = 6.7\%$ w/o and the intermediate zone $e_{p_u} = 5.3\%$ w/o. C/E biases on the reactivity loss with burn-up are consistent amongst the four samples (Bernard, 2006a). Table 22 shows that the target accuracy is met using JEFF-3.1.1 data, with a reactivity loss predicted within 3% accuracy.

Table 22: (C-E)/E $\pm \delta$ E/E on reactivity loss with burn-up (MINERVE oscillation of MOX rod cuts)

	PWR Dampierre2 MOX 5.3%, 6.7% Pu 4 rod cuts, 4- & 5-cycle
JEFF-3.1.1	+0.9 ± 1.5%
JEF-2.2	$-1.0 \pm 1.5\%$

6.5 Reactivity temperature coefficient

As with the previous K_{eff} neutronics parameter, this LWR reactivity coefficient is also very sensitive to nuclear data. Concerning UOX lattices, the isothermal temperature coefficient was already well predicted using JEF-2.2 (Erradi, 2003), and remains calculated within the 1 pcm/°C target accuracy using JEFF-3.1.1.

The temperature coefficient calculation using JEF-2.2, however, was too negative for MOX lattices at room temperatures. The isothermal temperature coefficient was accurately measured between 10°C and 80°C for 100% MOX cores in EOLE (MISTRAL2 and three PWR regular cores, and BASALA BWR mock-up). The calculation-experiment comparison is summarised in Table 23. C/E bias is reduced by 0.3 pcm/°C using JEFF-3.1.1 as compared to JEF-2 or B-VII calculation results.

Table 23: (C-E) $\pm \delta E$ on MOX temperature coefficient (pcm/°C)

	PWR MOX core MISTRAL2	PWR MOX core MISTRAL3	BWR MOX core BASALA
JEFF-3.1.1	-1.2 ± 0.3	-1.3 ± 0.3	-1.6 ± 0.3
JEF-2.2 or ENDF/B-VII	-1.5 ± 0.3	-1.6 ± 0.3	$\textbf{-2.0}\pm0.3$

6.6 Stainless steel reflectors

JEFF-3.1.1 calculation of water reflector has been validated in EOLE experiments, such as MISTRAL1 characterised by a regular core lattice fuelled by standard PWR UO₂-3.7% ²³⁵U rods; the reflector saving is estimated within 3 mm. A specific experiment FLUOLE has been performed in the EOLE facility, in order to validate the calculation of the Gen. II baffle-water reflector; the JEFF-3.1.1 calculation is also satisfactory (Vidal, 2008).

Heavy neutron reflectors are used in advanced PWRs, such as VVER1000 and EPR (Gen. III reactors) and will be probably utilised in Gen. IV FBR. The heavy reflector is a most challenging problem due to the nuclear data of SS components (mostly Fe, but also Cr and Ni) with their resonant behaviour and their strong inelastic scattering.

In order to provide representative experimental data, CEA performed the PERLE experiment (Santamarina, 2008b) (Figure 23). The reactivity worth of this 22-cm thick heavy reflector was measured and compared to the efficiency of a water reflector. JEFF-3.1.1 results are summarised in Table 24. Assuming the C/E bias in the water-reflected experiment MISTRAL1 as a reference, Table 24 shows a slight trend toward K_{eff} underestimation when implementing the SS reflector. However, compared to the 20 000 pcm radial leakage, this slight C/E shift (-155 ± 130 pcm) between MISTRAL1 and PERLE means that the heavy reflector worth is well predicted. It should be noted that the TRIPOLI-4/B-VII calculation increases the C/E shift between MISTRAL1 and PERLE up to -201 ± 130 pcm.

Figure 23: The PERLE core with SS reflector in the EOLE facility

Table 24: Residual reactivity (pcm) in EOLE UO₂-3.7% ²³⁵U regular cores

Experiment	MISTRAL1 H ₂ O reflector	PERLE SS reflector
Measurement	$109 \pm 24^{*}$	121 ± 22*
TRIPOLI-4/JEFF-3.1.1	205 (6)	62 (4)
C-E	+96 ± 95**	- 59 ± 98**

* Measurement uncertainty including soluble boron concentration, doubling time and β_{eff} components.

** Total uncertainty including measurement and technological components (enrichment, clad diameter, lattice pitch).

A reflector savings of $\delta_{ss} \approx 10 \text{ cm}$ was obtained from radial buckling measurements. JEFF-3.1.1 allows an accurate prediction of this neutronics parameter: C/E = -5 ± 2 mm, meeting the target accuracy required for radial power map calculation in Gen. III reactors.

These satisfactory JEFF-3.1.1 results for δ_{ss} and K_{eff} synthetic parameters were confirmed by measurements of the flux attenuation across the SS reflector. Both miniature fission chambers and foils activation detectors were used. These traverse measurements in the bulk SS are normalised to measurements performed at the centre of the core lattice, where the cosine flux is calculated with accuracy. The use of fission chambers with different deposits (²³⁵U, ²³⁷Np and ²³⁸U for the thermal, epithermal and fast flux investigation respectively) enables an online cartography of the neutrons throughout the increasing stainless steel thickness, at the core mid-plane.

The calculation/experiment comparison (Table 25) displays an accurate prediction, versus SS penetration, of fast flux decrease and intermediate flux build-up. Based on C/E versus penetration, the sensitivity study has demonstrated that the 56 Fe inelastic scattering level in the JEFF-3.1.1 evaluation is satisfactory.

FC position (cm)	SS penetration	FC ²³⁸ U	FC ²³⁷ Np	FC ²³⁵ U
0.0	Core centre	-0.2	-0.9	-1.2
2.64	Core		0.2	0.9
9.24	Core	0.2	0.8	0.5
19.80	1.98		-0.2	
21.12	3.30	0.4	-0.9	-1.5
22.44	4.62		2.7	
23.76	5.94	1.4	2.9	-0.5
25.08	7.26		2.2	
26.40	8.58	3.5	2.9	0.9
27.72	9.90		3.4	
29.04	11.22	3.4	4.1	0.9
30.36	12.54		2.8	
31.68	13.86	4.7	5.1	0.8
33.00	15.18		8.0	
34.32	16.50		8.0	1.7
35.64	17.82		4.9	
36.96	19.14		4.5	3.0

 Table 25: C/E bias (%) on flux attenuation

 throughout the core and the SS reflector

These satisfactory results for propagation calculations in steel are confirmed by the TRIPOLI-4/JEFF-3.1.1 analysis (Jouanne, 2008) of the ASPIS experiment with both Fe and SS. Fast and intermediate response functions [32 S(n,p), 115 In(n,n') and 103 Rh(n,n')] are predicted within 20% accuracy up to 70 cm deep penetration. The analysis results of the REPLICA experiment, with successive steel shielding and water blades, is also satisfactory. Finally, the current CEA recommendation for shielding (Poinot, 2008) is the same as that for reactor physics and fuel cycle calculations: JEFF-3.1.1 must be used.

Chapter 7: Conclusion

The JEFF-3.1.1 library is the result of 15 years of extensive validation against fundamental targeted experiments, LWR mock-up experiments, PWR and BWR chemical assays and SNF reactivity worth measurements. Moreover, JEFF-3 evaluations benefit from the feedback of experimental validation studies in FBR, fuel cycle, criticality safety and burn-up credit.

The corresponding CEA2005v4 library recommended for APOLLO2.8 is particularly qualified for accurate calculations of LWR neutronics parameters. This report has demonstrated that it is more accurate than ENDFB/VII-based calculations for fuel inventory, MOX reactivity and Pu ageing, and reactivity coefficients such as temperature coefficient, stainless steel reflectors.

JEFF-3.1.1 is used world wide for PWR and BWR calculations; CEA20005v4 is used inside the new ARCADIA package of Areva-NP (Curca-Tivig, 2008). It is also used in ERANOS2 for Gen. IV design.

Future JEFF-3 and APOLLO-3 libraries will continue to benefit from current fundamental experiments, such as OSMOSE and OCEAN devoted to nuclear data of actinides and absorber isotopes, as well as FBR experiments performed in MASURCA mock-ups and PHENIX irradiations.

References

Audi, G., et al. (2003), "The 2003 NUBASE Evaluation and the 2003 Atomic Mass Evaluation", *Nuclear Physics*, Volume A729, 22 December.

Bernard, D., et al. (2004), "Experimental Validation of the APOLLO2 Code for MOX Fuel. JEF-2.2 Results and JEFF-3.0 Improvements", The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments (PHYSOR 2004), Chicago, IL, USA, 25-29 April 2004, American Nuclear Society, La Grange Park, IL (2004).

Bernard, D., O. Litaize, A. Santamarina (2004a), "JEF-2.2/JEFF-3.0 Improvements on Spent Fuel Inventory Prediction in LWRs. Trends from Integral Experiments and Proposals for JEFF-3.1", JEFF Meeting, Paris, 24-26 November, JEFDOC-1043.

Bernard, D., et al. (2005), "Present Status of JEFF-3.1 Qualification for LWR. Reactivity and Fuel Inventory Prediction", JEFF Meeting, Paris, France, 28-30 November 2005, JEFDOC-1122.

Bernard, D., et al. (2006), "Actinide Neutron-induced Cross-sections: Analysis of the OSMOSE UO₂ Experiment in MINERVE", Proc. Int. Conf. on Reactor Physics: Advances in Nuclear Analysis and Simulation (PHYSOR2006), Vancouver, Canada, 10-14 September, ANS Topical Meeting.

Bernard, D., et al. (2006a), "Experimental Validation of the LWR Reactivity Loss with Burn-up: Analysis of SNF Oscillation Experiments", Proc. Int. Conf. on Reactor Physics: Advances in Nuclear Analysis and Simulation (PHYSOR2006), Vancouver, Canada, 10-14 September, ANS Topical Meeting.

Bernard, D., A. Santamarina (2006b), "²³⁷Np Xs Experimental Validation. Proposal for JEFF-3 Modification", Paris, France, 22-23 May, JEFDOC-1144.

Bernard, D., A. Santamarina, *et al.* (2006c), "Improvement of the ²³⁹Pu Evaluation for JEFF-3", Paris, France, 20-22 November 2006, JEFDOC-1158.

Bernard, D. (2006d), "Theoretical Calculations of ²⁴¹Am(n,g)^{242m/g}Am Isomeric Ratio via the Compound Nucleus Process", Workshop on Nuclear Data Evaluation for Reactor Applications (WONDER 2006), Cadarache, France, 9-11 October.

Bernard, D., et al. (2007), "JEFF-3.2 β pre-qualif: ⁱZr and ¹⁶O Neutron Cross-section Improvements", Paris, France, 26-28 November, JEFDOC-1226.

Bernard, D., et al. (2008), "Progress on Fission Product Cross-sections. Improvement of LWR Cycle Length Prediction", Paris, France, 21-23 May, JEFDOC-1238.

Bernard, D., et al. (2008a), ^{"239}Pu Data Improvements in Thermal and Epithermal Neutron Ranges", Proc. of Int. Conf. on Nuclear Data for Science and Technology (ND2007), Nice, France, 22-27 April 2007, O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin and S. Leray (eds.), EDP Sciences.

Bouland, O. (1997), "R-matrix Analysis of the ²⁴⁰Pu Neutron Cross-sections in the Thermal to 5 700-eV Energy Range", Nucl. Sci. and Eng., 127, 105-129.

Bouland, O., D. Bernard (2005), "Revised Evaluation of the ²⁴¹Am Isotope", JEFF Meeting, Paris, 2-4 May, JEFDOC-1086.

Chabert, C., A. Santamarina, P. Bioux (2000), "Elaboration and Experimental Validation of the APOLLO2 Depletion Transport Route for PWR Pu Recycling", Advances In Reactor Physics, and Mathematics and Computation Into the Next Millennium (PHYSOR 2000), Pittsburgh, PA, USA, 7-11 May 2000, American Nuclear Society, La Grange Park, IL.

Chabert, C., et al. (2000), "Qualification of the APOLLO2 Assembly Code Using PWR-UO2 Isotopic Assays. The Importance of Irradiation History and Thermomechanics on Fuel Inventory Prediction", Advances In Reactor Physics, and Mathematics and Computation Into the Next Millennium (PHYSOR 2000), Pittsburgh, PA, USA, 7-11 May 2000, American Nuclear Society, La Grange Park, IL.

Chabert, C., A. Santamarina, P. Bioux (2002), "Trends in Nuclear Data from Integral Experiments in Thermal and Epithermal Reactors", Proc. of the Int. Conf. on Nuclear Data for Science and Technology (ND2001), Tsukuba, Japan, 7-12 October 2001, published as Journal of Nuclear Science and Technology, Supplement 2, August.

Coste-Delclaux, M. (2008), "GALILEE: A Nuclear Data Processing System for Transport, Depletion and Shielding Codes", Proc. of Int. Conf. on the Physics of Reactors: Nuclear Power: A Sustainable Resource (PHYSOR2008), Interlaken, Switzerland, 14-19 September.

Courcelle, A., et al. (2001), "Experimental Validation of ²³⁵U Evaluations. Recommendations for JEFF-3", JEFF Meeting, Aix-en-Provence, 15-17 May 2001, JEFDOC-862.

Courcelle, A., *et al.* (2001a), "Experimental Validation of ²³⁸U Cross-sections. Recommendations for JEFF-3", JEFF Meeting, Paris, 19-21 November 2001, JEFDOC-883.

Courcelle, A., et al. (2002), "Experimental Validation of Main Fission Product and Actinide Nuclear Data. Improvements for JEFF", International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-performance Computing (PHYSOR 2002), ANS 2002 RPD Topical Meeting, Seoul, Korea, 7-10 October 2002, American Nuclear Society La Grange Park, IL.

Courcelle, A., et al. (2003), "Improvement of the BUC-FP Nuclear Data in the JEFF Library", Proc. of Technical Committee Meeting "Requirements, Practices and Developments in Burnup Credit Applications" IAEA TECDOC-1378, Madrid, Spain, 22-26 April 2002, IAEA, Vienna.

Courcelle, A., A. Santamarina (2004), "JEF-2.2 Nuclear Data Statistical Adjustment Using Post-irradiation Experiments", The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments (PHYSOR 2004), Chicago, IL, USA, 25-29 April 2004, American Nuclear Society, La Grange Park, IL.

Courcelle, A., A. Santamarina, S. Mengelle (2004a), "Improvements of Isotopic Ratios Prediction Through Takahama-3 Chemical Assays with the JEFF-3.0 Nuclear Data Library", The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments (PHYSOR 2004), Chicago, IL, USA, 25-29 April 2004, American Nuclear Society, La Grange Park, IL.

Courcelle, A., et al. (2005), "Evaluation of ²³⁸U Resonance Parameters from 0 to 20 keV", Proc. Int. Conf. on Nuclear Data for Science and Technology (ND2004), Santa Fe, NM, USA, 27 September-1 October 2004, Robert C. Haight (ed.), American Institute of Physics, Melville, NY. AIP Conference Proceedings No. 769.

Curca-Tivig, F. (2008), "ARCADIA Code Package for LWR calculations", Verification and Validation for Nuclear System Analysis Workshop, Idaho Falls, ID, USA, 21-25 July.

Derrien, H., et al. (2005), "Reevaluation and Validation of ²⁴¹Pu Resonance Parameters in the Energy Range Thermal to 20 eV", Nucl. Sci. and Eng., 150, 109-114 (2005) and JEFDOC-916 (Paris, April 2002).

Douce, S. (2008), Eléments de vérification des bibliothèques CEA93, CEAB7 et CEA2005 – Suivi du réacteur Saint-Laurent-B1, Commissariat à l'Énergie Atomique, Technical Report SERMA/LPEC/RT/08-4517/A.

Dupont, E., et al. (2005), "Neutron Evaluation and Validation of ¹⁰³Rh", Proc. Int. Conf. on Nuclear Data for Science and Technology (ND2004), Santa Fe, NM, USA, 27 September-1 October 2004, Robert C. Haight (ed.), American Institute of Physics, Melville, NY. AIP Conference Proceedings No. 769.

Dupont, E. (2006), "Actinide Fission and Capture Cross-section Measurements at ILL", Paris, France, 22-24 May, JEFDOC-1138.

Erradi, L., A. Santamarina and O. Litaize (2003), "The Reactivity Temperature Coefficient Analysis in Light Water Moderated UO_2 and UO_2 -PUO₂ Lattices", NSE, 144, 47-74.

Greenwood, R., et al. (1997), "Measurement of β -decay Intensity Distributions of Several Fission-product Isotopes Using a Total Absorption γ -ray Spectrometer", Nuclear Instrument and Methods in Physics Research, Vol. A390, pp. 95-154.

Hfaiedh, N., A. Santamarina (2005), "Determination of the Optimised SHEM Mesh for Neutron Transport Calculation", Proc. Int. Topical Meeting on Mathematics and Computation: Supercomputing, Reactor Physics and Biological Applications (M&C 2005), Avignon, France, 12-15 September.

Hugot, X., Y.K. Lee, F. Malvagi (2008), "Recent R&D around the Monte Carlo Code TRIPOLI-4 for Criticality Calculation", Proc. of Int. Conf. on the Physics of Reactors: Nuclear Power: A Sustainable Resource (PHYSOR2008), Interlaken, Switzerland, 14-19 September. Huynh, T.D. (2007), "Comparisons Between JEFF-3.1 and JEFF-3.1.1 with Decay Heat Calculations", Paris, France, 26-28 November, JEFDOC-1219.

Jouanne, C. (2008), Étude comparative des évaluations JEFF-3.2beta et ENDF/B-VII.0 avec les benchmarks de protection ASPIS et REPLICA, Commissariat à l'Énergie Atomique, Technical Report DM2S/SERMA/LLPR/RT/08-4455/A.

Kellet, M. (2007), "The JEFF-3.1.1 Decay Data Library", June, JEFDOC-1188.

Koning, A., et al. (2008), "The JEFF Evaluated Nuclear Data Project", Proc. Int. Conf. on Nuclear Data for Science and Technology (ND2007), Nice, France, 22-27 April 2007, O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin and S. Leray (eds.), EDP Sciences.

Leal, L.C., et al. (1999), "R-matrix Analysis of ²³⁵U Neutron Transmission and Cross-section Measurements in the 0 to 2.25 keV Energy Range", Nucl. Sci. Eng., 131, 230-253.

Leal, L.C., et al. (2002), "Aluminium Data Measurements and Evaluation for Criticality Safety Applications", JEFDOC-913.

Leconte, P., et al. (2007), "Calculation of Fuel Inventory and Reactivity Loss of Spent Fuels in BWRs", Paris, France, 26-28 November 2007, JEFDOC-1216.

Leconte, P., et al. (2008), "Qualification of the APOLLO2.8 Code Package for the Calculation of the Fuel Inventory and Reactivity Loss of UOX Spent Fuels in BWRs", Proc. Int. Conf. on the Physics of Reactors: Nuclear Power: A Sustainable Resource (PHYSOR2008), Interlaken, Switzerland, 14-19 September 2008.

Litaize, O., A. Santamarina (2002), "Experimental Validation of Effective Delayed Neutron Fraction in LWR Cores", International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-performance Computing (PHYSOR 2002), ANS 2002 RPD Topical Meeting, Seoul, Korea, 7-10 October 2002, American Nuclear Society La Grange Park, IL.

Litaize, O., et al. (2006), "JEFF-3.1 LWR Reactivity Qualification from EOLE Experiments", JEFF Meeting, Paris, France, 22-23 May 2006, JEFDOC-1143.

Lopez-Jimenez, M.J., et al. (2005), "Overview of Recent Bruyères-le-Chatel Actinide Evaluations", Proc. Int. Conf. on Nuclear Data for Science and Technology (ND2004), Santa Fe, NM, USA, 27 September-1 October 2004, Robert C. Haight (ed.), American Institute of Physics, Melville, NY. AIP Conference Proceedings No. 769.

Loubière, S., et al. (1999), "APOLLO2 Twelve Years Later", International Conference on Mathematical and Computation (M&C99), ANS Topical Meeting, Madrid, Spain, 27-30 September.

Macfarlane, R.E., et al. (2000), NJOY99.0 Code System, Technical Report PSR480, LANL.

Marck, S.C. van der, A. Hogenbirk (2003), "Criticality Benchmark Results – The New Releases JEFF-3.0, ENDF/B-VI.8 and JENDL-3.3", JEFF Meeting, Paris, April, JEFDOC-955.

Marck, S.C. van der (2005), "Criticality Safety Benchmark Calculations with MCNP-4C3 Using JEFF-3.1", JEFF Meeting, Paris, France, 28-30 November, JEFDOC-1107.

Mengelle, S. (2008), Notice d'identification des bibliothèques CEA2005.G281.V4.1.DIRECT, CEA2005.G172.V4.1.DIRECT, CEA2005.G99.V4.1.DIRECT, Commissariat à l'Énergie Atomique, Technical Report SERMA/LLPR/RT/08-4464/A.

Mengelle, S., D. Bernard, J-F. Vidal (2008a), Détermination et éléments de validation de la chaine d'évolution 160 nucléides pour la bibliothèque CEA2005V4.1, Commissariat à l'Énergie Atomique, Technical Report SERMA/LLPR/08-4397/A.

Mills, R. (2004), "Status of the UKFY3 Fission Yield Evaluation December 2004", JEFDOC-1031.

Mills, R. (2007), "Testing of JEFF-3.1.1 Radioactive Decay Data File for Consistency and Comparison with JEFF-3.1 Results", Paris, France, 26-28 November, JEFDOC-1220.

Nakajima, et al. (1990), "Neutron Resonances in ¹³³Cs", Annals of Nuclear Energy, 17, 569.

Noguère, G., A. Courcelle, J.M. Palau (2005), "Low Neutron Energy Cross-sections of the Hafnium Isotopes", *JEFF Meeting*, Paris, 2-4 May, *JEFDOC-1077*.

Noguère, G., *et al.* (2007), "Correction of the ${}^{16}O(n,\alpha)$ Cross-section for JEFF-3.2 β ", Paris, France, 26-28 November, JEFDOC-1207.

Noguère, G., D. Bernard, A. Santamarina (2007a), "Update of Zirconium Evaluations for JEFF-3.2(beta)", Paris, France, 26-28 November, JEFDOC-1208.

Nuclear Energy Agency (NEA) (2005), The JEFF-3.0 Nuclear Data Library, JEFF Report 19, Synopsis of the General Purpose File, ISBN 92-64-0104607, NEA No. 3711, OECD/NEA, Paris.

NEA (2006), The JEFF-3.1 Nuclear Data Library, JEFF Report 21, A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama (eds.), ISBN 92-64-02314-3, NEA No. 6190, OECD/NEA, Paris (2006).

NEA (2006), Nuclear Data for Improved LEU-LWR Reactivity Predictions, A Report by the Working Party on International Evaluation Co-operation of the Nuclear Science Committee, A. Courcelle (co-ordinator), R.D. MacKnight (monitor), NEA/WPEC-22, ISBN 92-64-02317-8, NEA No. 6199, OECD/NEA, Paris.

NEA (2009), Evaluated Data Library for the Bulk of the Fission Products, WPEC/SG23 Report, OECD/NEA, Paris, France, forthcoming.

Poinot, C., et al. (2008), Recommandation radioprotection CEA 2008: RR-CEA2008 pour le choix d'une bibliothèque de données nucléaires à utiliser pour les études de propagation des neutrons en dehors du coeur, Commissariat à l'Énergie Atomique, Technical Report DM2S/SERMA/LPEC/RT/08-4448/A.

Ruggiéri, J-M., et al. (2006), "ERANOS-2.1: The International Code System for GEN-IV Fast Reactor Analysis", Proc. Int. Conf. on Advances in Nuclear Power Plants (ICAPP'06), Reno, NV, USA, 4-8 June 2006, Curran Associates Inc.

Santamarina, A., N. Thiollay, C. Chabert (1999), "JEF-2 Fission Product Qualification Based on French Integral Experiments", JEFF Meeting, Paris, 12-14 April, JEFDOC-784.

Santamarina, A., et al. (2000), "Experimental Validation of JEF-2 Fission Products. Required Improvements in the JEFF-3 Evaluations", JEFF Meeting, Paris, 4-6 December, JEFDOC-851.

Santamarina, A., et al. (2002), "Qualification of the APOLLO2.5/CEA93.V6 Code for UOX and MOX Fuelled PWRs", International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-performance Computing (PHYSOR 2002), ANS 2002 RPD Topical Meeting, Seoul, Korea, 7-10 October 2002, American Nuclear Society La Grange Park, IL.

Santamarina, A., C. Collignon, C. Garat (2004), "French Calculation Scheme for Light Water Reactor Analysis", The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments (PHYSOR 2004), Chicago, IL, USA, 25-29 April 2004, American Nuclear Society, La Grange Park, IL.

Santamarina, A., et al. (2008), "Advanced Neutronics Tools for BWR Design Calculations", Nuclear Engineering and Design, 238, 1965-1974.

Santamarina, A. (2008a), "From Integral Experiments to Nuclear Data Improvement", Proc. of Int. Conf. on Nuclear Data for Science and Technology (ND2007), Nice, France, 22-27 April 2007, O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin and S. Leray (eds.), EDP Sciences.

Santamarina, A., et al. (2008b), "The PERLE Experiment for the Qualification of PWR Heavy Reflectors", Proc. of Int. Conf. on the Physics of Reactors: Nuclear Power: A Sustainable Resource (PHYSOR2008), Interlaken, Switzerland, 14-19 September.

Santandrea, A., R. Sanchez (2005), "Analysis and Improvements of the DPN Acceleration Technique for the Method of Characteristics in Unstructured Meshes", Annals of Nuclear Energy, 32, 163-193.

Sérot, O., B. Roque, A. Santamarina (2004), "Review of the Most Reactor Relevant Cumulated Fission Product Yields", *JEFF Meeting*, Paris, France, 24-26 November, *JEFDOC-1055*.

Spriggs, G., J. Campbell, V. Piksaikin (2002), "An 8-Group Delayed Neutron Model Based on a Consistent Set of Half-lives", *Progress in Nuclear Energy*, Vol. 41, 223-251.

Sublet, J.C., C. Jouanne, Y. Peneliau (2004), "TRIPOLI-4.3 JEFF-3.0 and pre-JEFF-3.1 Benchmarkings", JEFF Meeting, Paris, May, JEFDOC-1010.

Sublet, J.C., et al. (2005), "TRIPOLI-4.4 – JEFF-3.1 and ENDF/B-VIIb1 with ICSBEP Criticality Models", JEFF Meeting, Paris, France, 28-30 November, JEFDOC-1112.

Sublet, J-C., P. Ribon and M. Coste-Delclaux (2006), CALENDF-2005: User Manual, Technical Report CEA-R-6131, CEA.

Tommasi, J., et al. (2006), "Present Status of JEFF-3.1 Benchmarking Using ERANOS Code System", JEFF Meeting, Aix-en-Provence, France, 4-6 May, JEFDOC.

Tommasi, J., G. Noguère (2008), "Analysis of the PROFIL and PROFIL-2 Sample Irradiation Experiments in Phénix for JEFF-3.1 Nuclear Data Validation", Nucl. Sci. Eng., 160, 232-241. Trkov, A., M. Mattes (2004), "On the Thermal Scattering Law Data for Reactor Lattice Calculations", Int. Conf. Nuclear Energy for New Europe 2004, Portoroz, Slovenia, 6-9 September.

Vaglio-Gaudard, C., et al. (2006), "Qualification of APOLLO2 BWR Calculation Scheme on the BASALA Mock-up", Proc. Int. Conf. on Reactor Physics: Advances in Nuclear Analysis and Simulation (PHYSOR2006), Vancouver, Canada, 10-14 September, ANS Topical Meeting.

Vaglio-Gaudard, C., et al. (2007), "Accurate Calculation of Void Reactivity in MOX Lattices", Proc of the International Conference on Physics and Technology of Reactors and Applications (PHYTRA1), Marrakech, Morocco, 14-16 March.

Vidal, J-F., et al. (2008), "The Analysis of the FLUOLE Experiment for the APOLLO2 Validation of PWR Core Reflector", Proc. of Int. Conf. on the Physics of Reactors: Nuclear Power: A Sustainable Resource (PHYSOR2008), Interlaken, Switzerland, 14-19 September 2008.

Weil, J.L., T. Belgya and H.-F. Wirth (2008), "The ⁹⁹Tc(n,g)¹⁰⁰Tc Cross-section, ⁹⁹Tc(d,p)¹⁰⁰Tc and the ¹⁰⁰Tc Decay Scheme and Neutron Binding Energy", *Proc. of the Int. Conf. on Nuclear Data for Science and Technology (ND2007)*, Nice, France, 22-27 April 2007, O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin and S. Leray (eds.), EDP Sciences.