

Final Results: PWR MOX/UO₂ Control Rod Eject Benchmark

T. Kozlowski T. J. Downar Purdue University January 25, 2006

This work has been sponsored by the U.S. Nuclear Regulatory Commission. The views expressed herein are strictly those of the authors, and do not represent U.S. NRC staff position.

- Background
 - Proposed by U.S. NRC / RES in 2001 as part of Pu Disposition Research
 - Sponsored by U.S. NRC (Purdue) and OECD/NEA
- Motivation
 - Assessment of heterogeneous transport and nodal diffusion transient methods for MOX RIA
 - Comparison of MOX/UO₂ and UO₂ core transient response to CEA
- Numerical Benchmark
 - Based on 4-loop Westinghouse PWR reactor
 - Steady-state at HZP and HFP conditions
 - Transient Rod Eject from HZP conditions
 - Heterogeneous Reference Solution (DeCART 47G MOC)

- Group constants provided
 - 2G assembly homogenized XS with ADF and pin power form functions
 - 4G assembly homogenized XS with ADF and pin power form functions
 - 8G assembly homogenized XS with ADF and pin power form functions
 - Number densities for heterogeneous calculation
- Benchmark conditions
 - Reactivity insertion problem (important for Weapons Pu transient w/ small B-eff)
 - Initial HZP conditions, critical boron concentration, CR ejected from the full core
- Compare:
 - Eigenvalue
 - Assembly and Pin Power distribution
 - CR worth
 - Transient power, reactivity and fuel temperature

OECD/NRC MOX Rod Ejection Benchmark: Core Loading Pattern

	1	2	3	4	5	6	7	8	_
	U 4.2%	U 4.2%	U 4.2%	U 4.5%	U 4.5%	M 4.3%	U 4.5%	U 4.2%	
Α	(CR-D)		(CR-A)		(CR-SD)		(CR-C)		
	35.0	0.15	22.5	0.15	37.5	17.5	0.15	32.5	
	U 4.2%	U 4.2%	U 4.5%	M 4.0%	U 4.2%	U 4.2%	M 4.0%	U 4.5%	
В						(CR-SB)	o 15		
	0.15	17.5	32.5	22.5	0.15	32.5	0.15	17.5	
	U 4.2%	U 4.5%	U 4.2%	U 4.2%	U 4.2%	M 4.3%	U 4.5%	M 4.3%	
С	(CR-A)		(CR-C)	o 4 5	00 F		(CR-B)		
	22.5	32.5	22.5	0.15	22.5	17.5	0.15	35.0	
_	U 4.5%	M 4.0%	U 4.2%	M 4.0%	U 4.2%	U 4.5%	M 4.3%	U 4.5%	
D	0.45	00 F	0.45	07.5	0.45	(CR-SC)	0.45	20.0	
	0.15		0.15	37.5	0.15		0.15	20.0	
-	U 4.5%	0 4.2%	0 4.2%	0 4.2%	U 4.2%	U 4.5%	0 4.2%		
E	(CR-SD)	0.15	22.5	0.15	(CR-D) 27.5	0.15	(CR-SA)		
	M 4 20/	0.15	ZZ.J	0.13		0.15 M / 20/			
F	101 4.3%	(CP, SP)	101 4.3%	04.5%	0 4.5%	101 4.3%	0 4.3%		
Г	17.5	32.5	17.5	20.0	0.15	0.15	32.5		
	U 4.5%	M 4.0%	U 4.5%	M 4.3%	U 4.2%	U 4.5%	Assembly	/ Type	
G	(CR-C)		(CR-B)		(CR-SA)	0	CR Positi	on	Note
-	0.15	0.15	0.15	0.15	17.5	32.5	Burnup [0	GWd/t]	1.000
	U 4.2%	U 4.5%	M 4.3%	U 4.5%			Fresh		asse
Н							Once Bur	'n	
	32.5	17.5	35.0	20.0			Twice Bu	rn	

Note: 27% of the assemblies are MOX

Assembly Design

UOX Fuel UOX IFBA Fuel Guide Tube or Control Rod Guide Tube

Refueling Strategy

Assembly Type	Fresh Fuel 0 GWd/tHM	Once Burned 20.0 GWd/tHM	Twice Burned 35.0 GWd/tHM	
UOX 4.2%	28	28	17	
UOX 4.5%	24	24	20	
MOX 4.0%	8	8	4	
MOX 4.3%	12	12	8	
Total	72	72	49	

Note: 27% of the assemblies are MOX

Fuel Composition

Assembly Type	Density [g/cm ³]	HM Material					
UOX 4.2%	10.24	U-235: 4.2 w/o, U-238: 95.8 w/o					
UOX 4.5%	10.24	U-235: 4.5 w/d	o, U-238: 95.5 w/o				
MOX 4.0%	10.41	Corner zone: 2.5 w/o Pu-fissile Peripheral zone: 3.0 w/o Pu-fissile Central zone: 4.5 w/o Pu-fissile	Uranium vector: 234/235/236/238 = 0.002/0.2/0.001/99.797 w/o				
MOX 4.3%	10.41	Corner zone:2.5 w/o Pu-fissilePeripheral zone:3.0 w/o Pu-fissileCentral zone:5.0 w/o Pu-fissile	Plutonium vector: 239/240/241/242 = 93.6/5.9/0.4/0.1 w/o				

HELIOS	
--------	--

Identifier	0.0	17.5	20.0	22.5	32.5	35.0	37.5
42595	9.99999E-21	1.76830E-05	2.10532E-05	2.43736E-05	3.70448E-05	4.00530E-05	4.29970E-05
43599	9.99999E-21	2.40933E-05	2.73519E-05	3.05554E-05	4.27999E-05	4.57139E-05	4.85671E-05
46608	9.99999E-21	2.01585E-06	2.51039E-06	3.04915E-06	5.62129E-06	6.36298E-06	7.14199E-06
54631	9.99999E-21	1.06985E-05	1.20328E-05	1.33047E-05	1.77608E-05	1.87169E-05	1.96103E-05
55633	9.99999E-21	2.61076E-05	2.96475E-05	3.31193E-05	4.62932E-05	4.94008E-05	5.24312E-05
92235	9.71492E-04	5.80775E-04	5.36589E-04	4.94761E-04	3.49384E-04	3.18203E-04	2.88980E-04
92236	9.99999E-21	7.11583E-05	7.86753E-05	8.56486E-05	1.08470E-04	1.12982E-04	1.17044E-04
92238	2.18794E-02	2.16336E-02	2.15964E-02	2.15585E-02	2.13988E-02	2.13569E-02	2.13140E-02
94238	9.99999E-21	5.08451E-07	7.13536E-07	9.62084E-07	2.42733E-06	2.91468E-06	3.44917E-06
94239	9.99999E-21	1.07858E-04	1.14067E-04	1.19049E-04	1.30075E-04	1.31236E-04	1.31952E-04
94240	9.99999E-21	2.21196E-05	2.60945E-05	3.00003E-05	4.43591E-05	4.75380E-05	5.05287E-05
94241	9.99999E-21	1.09779E-05	1.37246E-05	1.64876E-05	2.67336E-05	2.89421E-05	3.09761E-05
94242	9.99999E-21	1.26448E-06	1.86575E-06	2.60137E-06	6.85451E-06	8.22176E-06	9.69682E-06
95241	9.99999E-21	1.76423E-07	2.49678E-07	3.33089E-07	7.19747E-07	8.17423E-07	9.11165E-07
8001	4.57018E-02						
44601	9.99999E-21	2.19801E-05	2.51017E-05	2.82139E-05	4.05465E-05	4.35951E-05	4.66278E-05
45603	9.99999E-21	1.19458E-05	1.37890E-05	1.55849E-05	2.22112E-05	2.37128E-05	2.51478E-05
45605	9.99999E-21	4.57383E-08	4.84212E-08	5.09780E-08	6.02870E-08	6.24351E-08	6.45223E-08
46605	9.99999E-21	7.71152E-06	9.18176E-06	1.07211E-05	1.74893E-05	1.93171E-05	2.11929E-05
46607	9.99999E-21	3.32193E-06	4.08714E-06	4.91198E-06	8.76228E-06	9.85276E-06	1.09907E-05
47609	9.99999E-21	1.21185E-06	1.49268E-06	1.79259E-06	3.14995E-06	3.52120E-06	3.90237E-06
49615	9.99999E-21	9.92244E-08	1.11432E-07	1.23041E-07	1.63316E-07	1.71839E-07	1.79758E-07
54634	9.99999E-21	3.25852E-05	3.71928E-05	4.17910E-05	6.00974E-05	6.46538E-05	6.92024E-05
60643	9.99999E-21	1.97780E-05	2.21845E-05	2.44529E-05	3.21512E-05	3.37326E-05	3.51775E-05
60645	9.99999E-21	1.48964E-05	1.68123E-05	1.86793E-05	2.56639E-05	2.72896E-05	2.88670E-05
C1 C A 7	0 000000 01		C 27/01D 0C	C CONEST NC	7 600460 06	ግ 000/1ፑ ሰራ	7 0/1630 06

Benchmark Calculations

- **Part 1**: Fixed T/H conditions: HZP ARO and HZP ARI, 1000 ppmB (2D)
 - $-k_{eff}$
 - assembly and pin power distribution
 - rod worth
- **Part 2**: Operating conditions: HFP, ARO (3D)
 - critical boron concentration
 - assembly and pin power distribution
- **Part 3**: Beginning of transient conditions: HZP, partly rodded (3D)
 - critical boron concentration
 - assembly and pin power distribution
- Part 4: Rod ejection transient (3D)
 - Ejection of the highest worth rod from conditions calculated in Part 3

Benchmark Conditions

♦ HFP

- 100.0 % rated power (3565 MW)
- inlet coolant temperature of 560 K
- inlet pressure of 15.5 MPa

♦ HZP

- 1.0e-4 % rated power (3565 W)
- inlet coolant temperature of 560 K
- inlet pressure of 15.5 MPa

Transient

- ejection of highest worth rod at HZP ARI, critical boron concentration
- rod fully ejected in 0.1 sections
- no reactor scram after the ejection
- boron concentration in the position of the other control rods are constant.

Benchmark Participants and Submitted Homogeneous Solutions

Nodal solutions

Code, unique	Organization	Solution	Groups/	Cross section
solution label	(Country)	method	Homogenization	library
CORETRAN	PSI	Nodal diffusion	2G	2G benchmark
1/FA	(Switzerland)	noual unfusion	Nodal	library
CORETRAN	PSI	Nodel diffusion	2G	2G benchmark
4/FA	(Switzerland)	noual unfusion	Nodal	library
EDISODE	Osaka University	Nodal diffusion	2G	2G benchmark
LEFISODE	(Japan)	noual unfusion	Nodal	library
NUPEC	KAERI	Nodal diffusion	2G	2G benchmark
NUKLC	(Korea)	noual unfusion	Nodal	library
PARCS	Purdue Univ.	Nodel diffusion	2G	2G benchmark
2G	(USA)	noual unfusion	Nodal	library
PARCS	Purdue Univ.	Nodel diffusion	4G	4G benchmark
4G	(USA)	noual unfusion	Nodal	library
PARCS	Purdue Univ.	Nodel diffusion	8G	8G benchmark
8G	(USA)	nodal diffusion	Nodal	library
SVETCU	JNES	Nodel diffusion	2G	2G benchmark
SKEIUN	(Japan)	inoual ultrusion	Nodal	library

Benchmark Participants and Submitted Heterogeneous Solutions

Heterogeneous solutions

Code, unique solution label	Organization (Country)	Solution method	Groups/ Homogenization	Cross section library
BARS	Kurchatov Inst. (Russia)	Lambda matrix	5G Cell hom	UNK generated
DeCART	SNU/KAERI (Korea)	MOC	47G Cell het	HELIOS based
DORT	GRS (Germany)	S_N	16G Cell hom	HELIOS generated
MCNP	Kurchatov Inst. (Russia)	Monte Carlo	Continuous Cell het	ENDF/B-VI with NJOY

Part 1, 2D fixed T/H

Eigenvalue and Assembly Power Comparison

	Figer		Todal Rod	Assembly		Power Error	
	Liger	Ivalue	Worth	AF	RO	A	RI
	ARO	ARI	[dk/k]	%PWE	%EWE	%PWE	%EWE
nodal						-	
CORETRAN 1/FA	1.06387	0.99202	6808	1.06	1.69	2.01	2.52
CORETRAN 4/FA	1.06379	0.99154	6850	0.96	1.64	1.67	2.18
EPISODE	1.06364	0.99142	6849	0.96	1.64	1.66	2.16
NUREC	1.06378	0.99153	6850	0.96	1.63	1.64	2.16
PARCS 2G	1.06379	0.99154	6850	0.96	1.63	1.67	2.18
PARCS 4G	1.06376	0.99136	6865	0.90	1.42	1.61	2.26
PARCS 8G	1.06354	0.99114	6868	0.86	1.25	1.65	2.49
SKETCH	1.06379	0.99153	6850	0.97	1.67	1.67	2.16
heterogeneous							
BARS	1.05826	0.98775	6745	1.29	1.92	3.92	10.30
DeCART	1.05852	0.98743	6801	ref	ref	ref	ref
DORT	1.06036	-	-	0.86	1.12	-	-
MCNP	1.05699	0.98540	6873	0.67	1.26	1.33	3.67
Max. difference	688	662	128				
Power-Weighted Err	or (PW	E) ^P	$WE = \frac{\sum_{i} e_i r}{\sum_{i} r e_i}$	$\frac{ef_i}{f_i}$			

EWE =

Error-Weighted Error (EWE)

$$\frac{calc_i - ref_i}{ref_i} \times 100$$

 $e_i =$

Part 1, 2D fixed T/H Pin Power Comparison

			Assembly	y Position		
	(A,1)	(B,2)	(C,3)	(D,4)	(E,5)	(F,6)
nodal	-					
CORETRAN 1/FA	0.85	1.05	0.91	2.37	1.38	4.89
CORETRAN 4/FA	-	-	-	-	-	-
EPISODE	0.25	0.23	0.42	1.37	0.47	4.04
NUREC	0.24	0.22	0.31	0.67	0.32	0.87
PARCS 2G	0.28	0.21	0.29	0.54	0.32	0.51
PARCS 4G	-	-	-	-	-	-
PARCS 8G	-	-	-	-	-	-
SKETCH	0.22	0.22	0.32	0.71	0.32	1.05
heterogeneous						
BARS	0.26	0.45	0.55	0.40	0.33	0.61
DeCART	ref	ref	ref	ref	ref	ref
DORT	1.52	0.59	0.92	0.33	1.64	0.41
MCNP	-	-	-	-	-	-

ARO

Part 1, 2D fixed T/H Pin Power Comparison

			Assembly	y Position		
	(A,1)	(B,2)	(C,3)	(D,4)	(E,5)	(F,6)
nodal						
CORETRAN 1/FA	6.22	1.31	5.95	3.26	7.75	3.99
CORETRAN 4/FA	-	-	-	-	-	-
EPISODE	2.44	0.28	2.32	1.35	2.37	3.83
NUREC	-	0.33	-	0.66	-	0.77
PARCS 2G	-	0.63	-	0.65	-	0.50
PARCS 4G	-	-	-	-	-	-
PARCS 8G	-	-	-	-	-	-
SKETCH	2.63	0.33	2.67	0.79	2.97	1.19
heterogeneous						
BARS	0.42	0.30	1.55	0.33	1.96	0.66
DeCART	ref	ref	ref	ref	ref	ref
DORT	-	-	-	-	-	-
MCNP	-	-	-	-	-	-

ARI

Part 2, 3D Hot Full Power Eigenvalue, Assembly Power, T/H Conditions

	Critical	Assembly F	Power Erro		Core Ave	erage T/H F	Properties	
	Boron			Doppler	Moderator	Moderator	Dutlet Mod	Dutlet Mod
	Concent.	%PWE	%EWE	Temp.	Density	Temp.	Density	Temp.
	[ppm]			[K]	[g/cm3]	[K]	[g/cm3]	[K]
nodal								
CORETRAN 1/FA	1647	0.31	0.51	908.4	706.1	581.0	658.5	598.6
CORETRAN 4/FA	1645	0.26	0.46	908.4	706.1	581.0	658.5	598.6
EPISODE	1661	0.40	0.64	846.5	701.8	582.6	697.4	585.5
NUREC	1683	0.31	0.44	827.8	706.1	581.1	661.5	598.7
PARCS 2G	1679	ref	ref	836.0	706.1	581.3	662.1	598.8
PARCS 4G	1674	0.31	0.50	836.1	706.1	581.3	662.1	598.8
PARCS 8G	1672	0.55	0.86	836.2	706.1	581.3	662.1	598.8
SKETCH	1675	1.04	1.39	836.6	705.5	580.9	659.6	598.9
Max. difference	38			81	4	2	39	13

Part 2, 3D Hot Full Power Pin Power Comparison

		Assembly Position							
	(A,1)	(B,2)	(C,3)	(D,4)	(E,5)	(F,6)			
nodal									
CORETRAN 1/FA	1.07	0.92	0.90	2.62	1.38	4.60			
CORETRAN 4/FA	-	-	-	-	-	-			
EPISODE	3.08	2.67	3.01	3.47	3.44	10.47			
NUREC	0.08	0.17	0.24	0.32	0.13	0.89			
PARCS 2G	ref	ref	ref	ref	ref	ref			
PARCS 4G	-	-	-	-	-	-			
PARCS 8G	-	-	-	-	-	-			
SKETCH	0.09	0.11	0.18	0.58	0.22	0.87			

Part 2, 3D Hot Full Power Axial Power

Part 3, 3D Hot Zero Power Critical Boron Concentration, Delayed Neutron Fraction and Assembly Power Comparison

	Critical Boron	Delayed Neutron	Assembly Power					
	Concent.	Fraction	Error					
	[ppm]	[pcm]	%PWE	%EWE				
nodal								
CORETRAN 1/FA	1351	568	1.26	4.10				
CORETRAN 4/FA	1346	568	1.09	3.72				
EPISODE	1340	579	1.05	3.42				
NUREC	1343	576	1.05	3.43				
PARCS 2G	1341	579	1.05	3.49				
PARCS 4G	1337	579	1.11	3.06				
PARCS 8G	1334	580	1.20	2.85				
SKETCH	1341	579	1.06	3.77				
heterogeneous								
BARS	1296	579	2.65	5.66				
DeCART	1265	-	ref	ref				
Max. difference	86	12						

Part 3, 3D Hot Zero Power Pin Power Comparison

	Assembly Position						
	(A,1)	(B,2)	(C,3)	(D,4)	(E,5)	(F,6)	
nodal							
CORETRAN 1/FA	6.46	0.81	6.66	3.44	6.71	4.81	
CORETRAN 4/FA	-	-	-	-	-	-	
EPISODE	2.51	0.57	2.33	1.41	2.39	3.88	
NUREC	2.38	0.68	2.14	0.64	2.33	0.80	
PARCS 2G	-	0.82	-	0.62	-	0.46	
PARCS 4G	-	-	-	-	-	-	
PARCS 8G	-	-	-	-	-	-	
SKETCH	2.65	0.70	2.65	0.80	2.79	1.09	
heterogeneous							
BARS	0.38	0.60	1.83	0.33	0.41	0.45	
DeCART	ref	ref	ref	ref	ref	ref	

Part 3, 3D Hot Zero Power Axial Power

Part 4, 3D Transient Integral Parameter Comparison

	Peak	Peak	Peak	Power				
	Time	Power	Reactivity	Integral				
	[sec]	[%]	[\$]	[%-sec]				
nodal								
CORETRAN 1/FA	0.35	140	1.08	24.8				
CORETRAN 4/FA	0.33	166	1.14	26.4				
EPISODE	0.33	160	1.13	26.9				
NUREC	0.36	139	-	28.4				
PARCS 2G	0.34	142	1.12	27.2				
PARCS 4G	0.33	152	1.12	27.8				
PARCS 8G	0.32	172	1.14	29.1				
SKETCH	0.34	144	1.12	28.0				
heterogeneous								
BARS	0.21	522	1.29	41.7				
Max. difference	0.04	32	0.06	4.3				

Part 4, 3D Transient Core Power and Reactivity

Part 4, 3D Transient Assembly and Point Pin Peaking

CORETRAN 1/FA

- N/A

N/A

– N/A

N/A

NUREC

* PARCS 2G

SKETCH

0.8

0.9

Part 4, 3D Transient Moderator Temperature and Density

- Nodal diffusion codes are capable of modeling static MOX core
 - 1-2% assembly and pin-power error at ARO
 - 2-4% assembly and pin-power error at ARI
- Nodal diffusion codes are consistent in modeling transient MOX core
 - Lack of high-order reference to assess absolute performance
- All nodal results almost identical, the only significant difference can be seen in pin power prediction due to differences in pin power reconstruction methods
- 1 node per FA discretization is not sufficient for MOX core even with advanced nodal methods (ANM)
 - The difference between 1/FA and 4/FA is small but noticeably improves results
- It was found that the **group effect is not very significant** for this problem
 - Negligible difference at static conditions
 - The difference between 2G diffusion and 8G diffusion is 17% for peak power and 7% for power integral
- Code improvement needs
 - High order heterogeneous transport transient capability

Benchmark Schedule

- December 2002: - Distribute first draft specifications
- February 2003:
- March 2003:
- April 2003:
- May 2003:
- August 2003:
- December 2003:
- February 2004:
- March 2004:
- August 2004:
- October 2004:
- June 2005:

- Obtain participant's comments
 - Implement participant's comments into specifications
 - Recalculate benchmark
 - Distribute final draft of the specifications
 - WPPR14: finalize specifications and schedule
- Provide any additional data for the benchmark
- Release 2nd revision with all comments
- Request preliminary results for WPPR meeting
- Prepare final 8 group xsec set
- Request for final results
- September 2004: WPRS01: final results from 4 participants
 - Request final results before end of the year
 - December 2004: Generate final DeCART reference
 - WPRS02: close benchmark
- January 2006: - submit final report for participants review
- January 2006: - WPRS03: present final report
- December 2006: - publish final report