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ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT 
The OECD is a unique forum where the governments of 34 democracies work together to address the economic, social and 
environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments 
respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an 
ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to 
common problems, identify good practice and work to co-ordinate domestic and international policies. 
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– to provide authoritative assessments and to forge common understandings on key issues, as input to government 
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development. 
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COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS 

The NEA Committee on the Safety of Nuclear Installations (CSNI) is an international committee made up 
of senior scientists and engineers with broad responsibilities for safety technology and research 
programmes, as well as representatives from regulatory authorities. It was created in 1973 to develop and 
co-ordinate the activities of the NEA concerning the technical aspects of the design, construction and 
operation of nuclear installations insofar as they affect the safety of such installations. 

The committee’s purpose is to foster international co-operation in nuclear safety among NEA member 
countries. The main tasks of the CSNI are to exchange technical information and to promote collaboration 
between research, development, engineering and regulatory organisations; to review operating experience 
and the state of knowledge on selected topics of nuclear safety technology and safety assessment; to 
initiate and conduct programmes to overcome discrepancies, develop improvements and reach consensus 
on technical issues; and to promote the co-ordination of work that serves to maintain competence in 
nuclear safety matters, including the establishment of joint undertakings. 

The priority of the CSNI is on the safety of nuclear installations and the design and construction of 
new reactors and installations. For advanced reactor designs, the committee provides a forum for 
improving safety-related knowledge and a vehicle for joint research. 

In implementing its programme, the CSNI establishes co-operative mechanisms with the 
NEA Committee on Nuclear Regulatory Activities (CNRA), which is responsible for issues concerning the 
regulation, licensing and inspection of nuclear installations with regard to safety. It also co-operates with 
other NEA Standing Technical Committees, as well as with key international organisations such as the 
International Atomic Energy Agency (IAEA), on matters of common interest. 
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EXECUTIVE SUMMARY 

Single-phase Computational Fluid Dynamics (CFD) is used more and more for design and safety issues 
related to Light-Water Reactor (LWR) thermal hydraulics. Over the past ten years, the Working Group for 
the Analysis and Management of Accidents (WGAMA) has initiated activities to promote the use of CFD 
for Nuclear Reactor Safety (NRS). A list of safety issues for which CFD may bring real benefits was 
established. Best practice guidelines (BPGs) applicable to single phase CFD were written. Assessment 
requirements were also addressed in a report with particular attention to a few safety issues. These past 
activities provided more confidence in the application of CFD for safety by defining the conditions and 
requirements for having some confidence in the predictions. However, no applicable methods have been 
published about a possible quantitative evaluation of the uncertainty of predictions, and such an evaluation 
is mandatory for complementing a best estimate approach within a nuclear reactor licensing framework. 
Thus, a review of the methodologies for determining the uncertainty of CFD predictions applied to reactor 
thermal hydraulics was initiated. This is a very recent area of investigation, and the reported activity is 
rather limited. Only a few prospective works are in progress. One must first list what exists in order to 
conclude what needs remain. A comparison with system codes may be useful since available uncertainty 
methods for system codes are rather mature as the BEMUSE project (NEA/CSNI/R(2011)4) has shown. 

 However, in the OECD CFD BPGs (NEA/CSNI/R(2014)11), some concepts are given to reach high 
quality of CFD results in the context of thermal-hydraulic safety. Based on the concepts described in the 
OECD CFD BPG report, which underline the key role physical analysis plays in thermal-hydraulic safety, 
this document introduces a more detailed proposal for a CFD uncertainty quantification (UQ) global 
approach to show the link between Phenomena Identification and Ranking Tables (PIRTs), verification, 
validation, and uncertainty quantification. The domain of possible application of single-phase CFD for 
NRS is first summarised. Next, the various sources of uncertainty are identified. Methods for uncertainty 
quantification are then reviewed, with special consideration of accuracy extrapolation and uncertainty 
propagation methods and the possible use of meta-models. Subsequently, a few methods and elements of 
methods are summarised in respective subsections. The roles of Separate-Effect Tests (SETs) and Integral-
Effect Tests (IETs) in the UQ process are mentioned. Finally, some conclusions are drawn, remaining 
needs are identified, and recommendations for further research and development and benchmarking of 
methods on this topic are given. 

 A review of existing work in this field was conducted, but only very limited information was found 
on CFD UQ applied to nuclear reactor safety analysis. 

 The main reactor issues for which CFD UQ methods are expected to be applicable in the short and 
medium term are mixing problems (e.g. temperature, boron concentration, hydrogen concentration) with or 
without density effects.  

 The two types of methods developed and used for UQ of system codes may be extended to CFD 
with some adaptation: 

• The methods based on the propagation of input parameters uncertainty; and 
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• The methods based on the extrapolation of accuracy.  

 The first method determines the uncertainty of all input uncertain parameters and propagates these 
uncertainties in the reactor calculation. The second method measures the accuracy of code predictions of 
IETs simulating a reactor transient and extrapolates the accuracy to the reactor application. 

 However, the adaptation is still in progress, and there is a rather limited feedback from the few first 
applications.  

 Possible sources of error and uncertainty in CFD predictions are as follows: 

• initial and boundary conditions, 
• physical properties of the materials, 
• all physical models embedded in the code, 
• non-modelled physical processes or forms of the physical models (e.g. turbulence modelled as an 

extra diffusivity), 
• numerical errors such as discretisation errors in space and time, approximate solving of algebraic 

systems, iterative convergence errors, gradient reconstructions in unstructured grids, and 
rounding errors,  

• simplification of the geometry and/or limitation of the domain studied (can be related to first 
bullet in this list), and 

• possible chaotic behaviours resulting in a good determination in the short term but an 
indetermination in the long term. 

 Despite this long list, CFD remains the only way to simulate some 3D behaviour. 

 Below are some first observations and conclusions based on pre-existing work summarised in this 
review: 

• Various sources of uncertainty in the code prediction include initial and boundary conditions, 
physical properties, parameters of the physical models, forms of the physical models and of the 
non-modelled physical processes, numerical models, numerical solution errors, simplifications of 
the geometry, possible chaotic behaviours, and extrapolation beyond the validated domain; 

• The propagation method with Monte Carlo sampling is applicable to CFD even with a large 
number of input-uncertain parameters, but it may lead to a prohibitive CPU cost in some reactor 
issues; 

• The use of deterministic sampling (DS) rather than random sampling may be a less expensive 
alternative for propagation methods; 

• Using a meta-model may be a somewhat cheaper alternative for propagation methods when the 
number of input-uncertain parameters is low; when used at first order, it is close to the DS 
method in terms of the required number of calculations; 

• The determination of uncertainty due to physical models is not straightforward for propagation 
methods; for example, uncertainty in the parameters of turbulence models may depend strongly 
on the type of flow configuration; 

• Extrapolation methods have the advantage of benefitting from integral effect tests, which are 
often designed to study the safety issue of interest; they possibly require less CPU cost than 
Monte Carlo propagation methods; however, a preliminary work with the calculation of many 
SETs and IETs is necessary; moreover, it has yet to be proved that a pure extrapolation method 
like UMAE can be adapted or extended to CFD; 
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• The uncertainty due to numeric compared to other sources of uncertainty is relatively more 
important than that system codes and requires a special attention; methods for numerical error 
evaluation exist, but they may fail or be difficult to use in practical applications; 

• The validation of the CFD tools on scaled IETs relative to the situation of interest seems to be 
mandatory either in the verification and validation (V&V) process or in both V&V and UQ steps;  

• A combination of propagation and extrapolation techniques may be a reasonable compromise in 
order to cover as many uncertainty sources as possible while limiting the number of calculations 
and the CPU cost; 

• The CPU cost is still the main hindrance to the CFD application, but the continuous increase in 
computer efficiency will progressively erode this obstacle. 

 Maturity of all the reviewed methods is low or very low, and all of them need extensions or 
adaptations as well as extensive testing and benchmarking. These are the main recommendations resulting 
from this work: 

• An effort should be devoted to the determination of uncertainty due to physical models for 
propagation methods; methods should be tested following what has been done in the PREMIUM 
benchmark (see www.oecd-nea.org/nsd/docs/indexcsni.html) for system codes; 

• Further R&D work on numerical error estimation is recommended; 

• The first benchmark should be based on simple tests and should require limited CPU cost in order 
to test all types of methods, including the propagation methods with statistical sampling. It should 
be as close as possible to the mixing with density effects encountered in some reactor safety 
issues; the new WGAMA CFD benchmark based on GEMIX (see www.oecd-
nea.org/nsd/csni/cfd/) meets the requirements; 

• A second benchmark should be closer to real application and should use one of the combined 
effect tests (or demonstration test) designed to investigate reactor issues.  

 Although CFD UQ is still in its early stages, application of some existing methods – if properly done 
and well tested – seems achievable.  

 The application of single-phase CFD to safety demonstration does not give rise to insurmountable 
difficulties, and such new technology may reach a degree of maturity comparable to that of system codes, 
at least for a few first applications in the short or medium term. The application of BPGs, a comprehensive 
assessment relative to the application, and a consolidated UQ method are the main requirements. A high 
priority should be put on progress toward the latter criterion listed. 

  

https://www.oecd-nea.org/nsd/docs/indexcsni.html
https://www.oecd-nea.org/nsd/csni/cfd/
https://www.oecd-nea.org/nsd/csni/cfd/
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1.  INTRODUCTION 

Single phase CFD is used increasingly more for design and safety issues related to light water reactor 
(LWR) thermal hydraulics. Over the past ten years, the Working Group for the Analysis and Management 
of Accidents (WGAMA) has initiated activities to promote the use of CFD for NRS: A list of safety issues 
for which CFD may bring real benefits was established: BPGs applicable to single phase CFD have been 
written; and assessment requirements were addressed in a report with particular attention to a few safety 
issues. These activities provided more confidence in the application of CFD for safety by defining the 
conditions and requirements for having some confidence in the predictions. However, no applicative 
methods were written about a possible quantitative evaluation of the uncertainty of predictions which is 
mandatory in a Best Estimate approach. A new activity was then initiated to review the methodologies for 
determination of the uncertainty of CFD predictions applied to reactor thermal hydraulics. This is a very 
recent domain of investigation and the reported activity is rather limited. Only some prospective works are 
in progress in different communities. However one may first list what exists and conclude on the remaining 
needs. A comparison with system codes may be useful since available methods are rather mature as the 
BEMUSE project has shown (see www.oecd-nea.org/nsd/docs/2011/csni-r2011-4.pdf).  

 The OECD CFD BPGs (NEA/CSNI/R(2014)11) give some concepts to reach good quality for CFD 
results in a thermal-hydraulic safety context. Based on these concepts which underline the key role of the 
physical analysis, one can introduce first, in this document, a more detailed proposal for CFD UQ global 
approach in showing the link between Phenomena Identification and Ranking 
Tables/Verification/Validation/Uncertainty Quantification. The domain of possible application of single-
phase CFD for NRS is first recalled. Then the various sources of uncertainty are identified. Methods for 
uncertainty quantification are then reviewed, considering accuracy extrapolation and uncertainty 
propagation methods (with the possible use of meta-models). Then a few methods or elements of methods 
are summarised in respective subsections. The role of Separate Effect Tests (SETs) and Integral Effect 
Tests (IETs) in the UQ process is mentioned. Finally some conclusions are drawn, remaining needs are 
identified, and recommendations for further R&D and benchmarking of methods are given to progress on 
this topic. 

  

https://www.oecd-nea.org/nsd/docs/2011/csni-r2011-4.pdf
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2.  THE DOMAIN OF POSSIBLE APPLICATION OF SINGLE-PHASE CFD FOR NRS 

WGAMA has done the following regarding CFD applications in NRS: evaluated the existing CFD 
assessment basis, identified gaps that need to be filled in order to adequately validate CFD codes, and 
proposed a methodology for establishing assessment matrices relevant to NRS needs. Writing Group 2 
(WG2) produced a report (Smith at al., 2008) with the following content: 

• A critical review of NRS problems in which the use of CFD is needed for the analysis or  its use 
is expected to result in major benefits; 

• A critical review of the existing assessment basis for CFD applications to NRS issues; and 

• Identification of gaps in the technology base and of the need for further development efforts. 

 WG2 focused on the use of CFD techniques for single-phase problems relating to NRS. This is the 
traditional environment for most non-NRS CFD applications and the one which has a firm basis in the 
commercial CFD area. NRS applications involving two-phase phenomena were also listed for 
completeness, but full details were reserved for the Writing Group 3 (WG3) document (Bestion et al., 
2008, 2010), which addresses the extensions necessary for CFD to handle such problems.  

 The classification of the problems identified by the Group is summarised in Table 2.1. With some 
overlap, the entries are roughly grouped into problems concerning (a) the reactor core, (b) the primary 
circuit, and (c) containment. 

 Most single-phase issues appear to be related to turbulent mixing problems, including temperature 
mixing and mixing of chemical components in a multi-component mixture such as boron in water, 
hydrogen in air: 

• Erosion, corrosion, and deposition; 

• boron dilution; 

• mixing, stratification and hot-leg heterogeneities; 

• heterogeneous flow distribution, e.g. in SG inlet plenum causing vibrations; 

• boiling-water reactor (BWR) or advanced BWR lower plenum flow; 

• pressurized thermal shock (PTS); 

• induced break; 

• thermal fatigue; 

• hydrogen distribution; 

• chemical reactions, e.g. combustion and detonation; 

• special considerations for advanced reactors (including gas-cooled). 
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 The main steam line break (MSLB) issue can also be included; in that case, mixing of colder water 
coming from the broken loop and hotter water coming from the other loops occurs in the pressure vessel 
(PV).  

 Some multi-phase issues also require preliminary single phase investigations. For example, critical 
heat flux in a pressurised-water reactor (PWR) depends on single-phase mixing of water among sub-
channels. 

 In some of these mixing issues, density differences induce buoyancy effects, which significantly 
influence the mixing: For example, cold water might mix with hot water; borated water can mix with non-
borated water; or hydrogen could mix with air. 

 All of these mixing problems can be simulated with both Reynolds-Average Navier-Stokes (RANS) 
and Large-Eddy Simulation (LES) models of turbulence, but RANS models require less CPU cost and 
because of that are likely to be preferred. The choice of turbulence models depends on the conditions and 
the guidelines in the Writing Group 1 (WG1) report (Mahaffy et al., 2007). 

 The mixing problems listed above are varied. Of them, only thermal fatigue requires prediction of 
low frequency fluctuations, virtually excluding RANS approaches and strongly favouring LES models. 
Some of the mixing issues included above are steady-state or quasi-steady-state flows, including hot-leg 
heterogeneities, heterogeneous flow distribution, lower plenum flow, induced break, mixing between core 
sub-channels, while others such as boron dilution, PTS, and hydrogen distribution are rather slow and long 
transients (boron dilution, PTS, Hydrogen distribution. Only a few consider phenomena at a small time 
scale (combustion, thermal fatigue). In summary, uncertainty evaluation of CFD should focus first on 
mixing problems with density effects in steady state or in slow transients, since those areas cover most of 
the envisaged applications. 
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Table 2.1. NRS problems requiring CFD with/without coupling to system codes 

 NRS problem System 
classification 

Incident 
classification 

Single- or 
multi-phase 

1 Erosion, corrosion, and deposition Core, primary, 
and secondary 
circuits 

Operational Single/Multi 

2 Core instability in BWRsa Core Operational Multi 

3 Transition boiling in BWR/determination of MCPRb Core Operational Multi 

4 Recriticality in BWRs Core BDBAc Multi 

5 Reflooding Core DBAd Multi 

6 Lower plenum debris coolability/melt distribution Core BDBA Multi 

7 Boron dilution  Primary circuit DBA Single 

8 Mixing, stratification and hot-leg heterogeneities Primary circuit Operational Single/Multi 

9 Heterogeneous flow distribution (e.g. in SG inlet plenum 
causing vibrations, HDR experiments, etc.) 

Primary circuit Operational Single 

10 BWR/ABWR lower plenum flow  Primary circuit Operational Single/Multi 

11 Waterhammer condensation Primary circuit Operational Multi 

12 Pressurized thermal shock (PTS) Primary circuit DBA Single/Multi 

13 Pipe break - in-vessel mechanical load Primary circuit DBA Multi 

14 Induced break Primary circuit DBA Single 

15 Thermal fatigue (e.g. T-junction) Primary circuit Operational Single 

16 Hydrogen distribution Containment BDBA Single/Multi 

17 Chemical reactions, e.g. combustion or detonation Containment BDBA Single/Multi 

18 Aerosol deposition/atmospheric transport  
(source term) 

Containment BDBA Multi 

19 Direct-contact condensation Containment/ 
Primary circuit 

DBA Multi 

20 Bubble dynamics in suppression pools Containment DBA Multi 

21 Behaviour of gas/liquid surfaces Containment/ 
Primary circuit 

Operational Multi 

22 Special considerations for advanced reactors (including 
gas-cooled) 

Containment/ 
Primary circuit 

DBA/BDBA Single/Multi 

aBWR – Boiling Water Reactor 
bMCPR – Minimum Critical Power Ratio 
cBDBA – Beyond Design Basis (or Severe) Accident  
dDBA – Design Basis Accident 
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3.  LINKS BETWEEN PIRT, SCALING, VERIFICATION, VALIDATION AND UNCERTAINTY 
QUANTIFICATION 

3.1 Solving a complex reactor thermal-hydraulic issue 

A reactor safety demonstration requires the analysis of complex problems related to accident scenarios. 
Without some simplification and/or distortion, experiments cannot reproduce the physical situation at a 
reasonable cost, and numerical tools cannot simulate the problem by solving the exact equations. Only 
reduced-scale experiments are feasible to investigate the phenomena, and only approximate systems of 
equations can be solved to predict time and/or space-averaged parameters with errors due to imperfections 
of the closure laws and to numerical errors. Therefore, complex methodologies are necessary to solve a 
problem; these include process identification and ranking table (PIRT) analysis, scaling analysis, selecting 
appropriate scaled integral effect tests (IET) or combined effect tests (CET) and separate effect tests, 
selecting a numerical simulation tool, the verification and validation (V&V) of the tool, the code 
application to the safety issue of interest, and using an uncertainty method to determine the uncertainty of 
code prediction. This global approach is illustrated in Figure 3.1.  

 
Figure 3.1. Methodology for solving a complex reactor thermal-hydraulic issue 
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3.2 Phenomena identification and ranking table 

Phenomenon identification is the process of analysing and subdividing a thermal-hydraulic scenario in a 
complex system, meaning a system that depends upon a large number of thermal-hydraulic quantities, into 
several simpler processes or phenomena that depend mainly upon a limited number of thermal-hydraulic 
quantities.  

 During the physical analysis, discerning the dominant parameters, i.e., the figures of merit (FoM), 
from the parameters which have an influence on FoM is useful. In CFD studies, FoM are those parameters 
which play a key role directly on the safety criteria Depending on the safety scenario, the FoM can be a 
scalar, a multi-dimensional value over space and/or time, or a dimensionless number. For any type of FoM, 
a required accuracy must be determined in advance. This required accuracy must be kept in mind when 
judging the pertinence of all subsequent steps in the VVUQ process. 

 The “R” in PIRT stands for ranking and means the process of establishing a hierarchy of identified 
processes with regards to their influence on FoM.  

 PIRT is a formal method described in Wilson and Boyack (1998: NRC-RG 1.203). OECD WGAMA 
BPGs recommend its use (Mahaffy et al., 2007). The main steps (see Appendix 1) of the physical analysis 
based on PIRT are 

• Establish the purpose of the analysis and specify the reactor transient (or situation) of interest. 

• Define the dominant parameters or FoM. 

• List the involved physical phenomena and associated parameters. Identify and rank key 
phenomena with respect to their influence on the FoM, or for a more accurate PIRT, identify and 
rank the parameters associated with each phenomenon. To strengthen PIRT evaluation, the level 
of knowledge of each parameter can be added in order to identify the weakness of the analysis for 
parameters that have a strong influence but for which a low level of knowledge is available. 

• Identify dimensionless numbers that control the dominant phenomena. 

PIRT can be based on expert assessment, on analysis of some experiments, or on sensitivity studies using 
simulation tools. In the United States, PIRT analysis traditionally relies more heavily on expert assessment, 
while WGAMA recommends performing sensitivity studies for a better justification in a NRS 
demonstration (PIRT validation). The NRC Regulatory Guide (1.2.0.3) agrees with WGAMA for the 
EMDAP, an evaluation method for codes: “The initial phases of the PIRT process described in this step 
can rely heavily on expert opinion, which can be subjective. Therefore, it is important to validate the PIRT 
using experimentation and analysis … Sensitivity studies can help determine the relative influence of 
phenomena identified early in the PIRT development and for final validation of the PIRT as the EMDAP is 
iterated.” Because of the iterative process, one can start with expert assessments and then refine it based 
on some sensitivity studies to make the PIRT conclusions more accurate. 

 More precisely, when PIRT is applied to an issue where CFD is the selected simulation tool, the 
following steps: 

• Define the problem and the PIRT objective; 
• Define the reactor transient of interest and simulation domain clearly; 
• Identify the dominant physical phenomena including typical 3D thermal-hydraulic phenomena 

that CFD can describe; 
• Determine the dominant parameters or FoM and the parameters which influence the FoM; 
• Define  the quantity of interest; 
• Identify the dimensionless numbers describing the dominant physical phenomena. 
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 Such a PIRT could be called a quantified PIRT (QPIRT) (MIT, 2012). This is described in 
Appendix 1.  

3.3 Scaling 

The term scaling can be used in a number of contexts; two of these may be employed hereafter: 

1. The scaling of an experiment is the process of demonstrating how and to what extent the 
simulation of a physical process (e.g. a reactor transient) by an experiment at a reduced scale or 
at different values of some flow parameters such as pressure and fluid properties can be 
sufficiently representative of the real process in a reactor; 

2. Scaling applied to a numerical simulation tool is the process of demonstrating how and to what 
extent the numerical simulation tool validated on one or several reduced scale experiments or at 
different values of some flow parameters such as pressure and fluid properties can be applied 
with sufficient confidence to the real process. 

 Scaling leads to predict a result for the reactor from a scaled experiment, as mentioned in Oberkampf 
and Roy (2010) in their book on V&V.  

 When solving a reactor thermal-hydraulic issue, the solution may require (1) purely experimental 
data, meaning that experiments can predict what would occur in a reactor with sufficient accuracy and 
reliability (the red arrow in Figure 3.1) or (2) the use of both experiments and simulation tools. 

 The first case is uncommon and is not considered here since CFD simulation tools are the focus. In 
this work, the focus is on the second case, in which experiments as well as simulation tools are used to 
solve the issue. This means that the simulation tool is used to extrapolate from experimental data to a 
reactor situation; this process is called upscaling, and the degree of confidence in this extrapolation is part 
of the scaling issue. 

 Extrapolating from experimental data to a reactor situation using a single-phase CFD tool raises 
several questions: 

• How to guarantee that a CFD code can extrapolate from a reduced-scale validation experiment to 
a full-scale application?  

• How to extrapolate the nodalisation from a reduced-scale validation experiment to a full-scale 
application? 

• How to extrapolate: 

o From one fluid to another fluid? 

o To a different value of the Re number and/or to a different value of any other non-dimensional 
numbers? 

 In any case, the numerical simulation of scaled experiments has a given accuracy defined by the 
error on given target parameters, and one should determine how the code error changes when extrapolating 
to the reactor situation. Therefore, scaling associated with CFD applications is part of the CFD code 
uncertainty evaluation and is a necessary preliminary step in this uncertainty evaluation. 

 Both scaling and uncertainty are closely related to the process of Validation and Verification. The 
definition of a metrics for the validation is also part of the issue. 

 For application in nuclear reactor safety, under Zuber a technical programme group of the U.S. NRC 
(1991) developed a comprehensive methodology named Hierarchical Two-Tiered Scaling (H2TS). This 
work provided a theoretical framework and systematic procedures for carrying out scaling analyses. The 
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name is based on using a progressive and hierarchical scaling organised in two basic steps. The first one is 
top-down (T-D), and the second step is from bottom to top or bottom–up (B-U).  

 The first step, T-D, is organised at the system or plant level and is used to deduce non-dimensional 
groups that are obtained from mass (M), energy (E), and momentum (MM) conservation equations 
obtained from systems considered important in PIRT. These non-dimensional groups are used to establish 
the scaling hierarchy, i.e., what phenomena have priority in order to be scaled, and to identify what 
phenomena must be included in the B-U analysis. 

 The second part of the H2TS methodology is the B-U analysis. This is a detailed analysis at the 
component level performed to make sure that all relevant phenomena are properly represented in the 
balance equations that govern the evolution of the main magnitudes in the different control volumes.  

 In the context of safety demonstration and due to the limitations of system codes, the use of CFD is 
envisaged to simulate complex 3D flows. To give confidence in the CFD results of interest, rigorous 
approaches based on codes and methods.  

 To justify CFD results, the methodology is based on physical analysis and includes verification, 
validation, application to industrial scale, and uncertainty quantification. Following this type of 
methodology, each step must be proved to be consistent with the others and with the final goal of the 
simulations. The physical analysis, based on a dedicated to a specific reactor scenario, has a key role in 
achieving this consistency. This view of justifying the CFD results is in agreement with Oberkampf and 
Roy (2010) and the BPG from OECD.  

 The scaling analysis is based on the PIRT, but it can also help the PIRT by helping rank the 
phenomena. The PIRT may lead to scaling experimental IET data, and the scaling may also identify the 
need for SETs when using, for example, the H2TS method with both T-D and B-U approaches. The 
selection of the numerical tool, here a CFD code or a coupling of CFD with other thermal-hydraulic codes, 
must be consistent with the PIRT: The selected physical model should be able to describe the dominant 
processes. The selected numerical tool must then be verified and fully validated in particular on the 
selected IETs and SETs. The example shown in Figure 3.1 corresponds to investigations of mixing 
problems in cold leg and PV of a PWR with ROCOM as IET and GEMIX as one of the SETs. The code 
application to the reactor transient must include an uncertainty quantification which may use code 
validation results to evaluate the impact of some sources of uncertainty. 

3.4 Verification and validation 

Verification and validation (V&V) activities deal with numerical and physical assessment. Verification is a 
process which assesses software correctness and numerical accuracy of the solution to a given physical 
model defined by a set of equations. In a broad sense, verification is performed to demonstrate that the 
design of the code’s numerical algorithms conforms to the design requirements, that the source code 
conforms to programming and language standards, and that its logic is consistent with the design 
specification. The verification is usually conducted by the code developers, and sometimes independent 
verification is performed by the code users. Verification covers equation implementation and calculation of 
convergence rate for code and solution verification (Oberkampf and Roy, 2010). Practically, verification 
consists of calculating some test cases, the results of which are then compared to an analytical solution or a 
reference solution. Developers do some code verification and should provide the related documentation 
required for demonstration of V&V completeness. 

 Validation of a code assesses the accuracy of the physical models of the code based on comparisons 
between computational simulations and experimental data. Validation is performed to provide confidence 
in the ability of a code to predict the values of the safety parameter or parameters of interest. It may also 
quantify the accuracy of the parameters. The results of validation can be used to determine the uncertainty 
of some constitutive laws of the code. Validation can be conducted by the code developers and/or by the 
code users. The former is called developmental assessment, and the latter is called an independent 



24 

assessment. A validation matrix is a set of selected experimental data for the purpose of extensive and 
systematic validation of a code. The validation matrix usually includes 

• basic tests,  

• SETs, 

• IETs or CETs, and 

• nuclear power plant data.  

 Additionally, various validation matrices can be established by code developers and/or code users 
for their own purposes.  

 SETs are experimental tests which are intended to investigate a single physical process either in the 
absence of other processes or in conditions which allow measurements of the effects of the process of 
interest. A SET may be used to validate a closure relation independently from the others. 

 IETs are experimental tests which are intended to simulate the behaviour of a complex system with 
all interactions among the various flows and heat transfers processes occurring in various system 
components. An IET relative to reactor-accident thermal hydraulics can simulate the whole primary 
cooling circuit and an accidental scenario through initial and boundary conditions. 

 For the two steps of validation, the comparison of simulation results with measurements from 
experiments is of key importance (starting with the metric definition). This comparison provides some 
elements used to determine the uncertainties from the models. The gaps between calculations and 
experimental data contribute to the uncertainty quantification but can also help selecting parameters of the 
CFD code used such as turbulence model, numerical scheme. Nikolaevna proposed a method for 
synthesising validation results in a table (see Appendix 2).  

 The different ways of using validation results is an important differentiating point between the UQ 
methodologies. 

3.5 Uncertainty quantification 

Uncertainty quantification (UQ) starts by clearly identifying the various sources of uncertainty. Figure 3.2 
shows the two physical domains covered by V&V, i.e., the test conditions for SET and IET during the 
validation process, as well as the reality of interest which is presently a nuclear reactor named application 
domain. The validation domain is shown by the blue line; the yellow line shows the application domain. 

 UQ activities should concern both validation and application since all physical phenomena identified 
as important in the PIRT analysis must be present in the validation domain.  

 This section will not go into further detail on the UQ matter because the aim of this document is to 
establish a review of the existing methods and to initiate a state of the art on the UQ of CFD. However, 
before dealing with UQ of CFD in NRS demonstration, one should deal first with UQ of CFD results 
obtained during validation process. In the same way that PIRT is an iterative process, VVUQ also is.  

 As for V&V, users must run numerous sensitivity studies to give confidence to the simulation tool 
results. For the application step, users must run more sensitivity calculations to obtain sufficient data to 
reach statistically converged results. These sensitivity calculations, performed to check the quality of the 
base CFD calculation, must not be confused with the sensitivity analysis, which is performed in addition to 
UQ and makes identification of the main contributors to the uncertainty of FoM possible. 
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3.6 Reassembling uncertainties  

Applied methodologies and frameworks to include UQ validation results at the scale of interest are clearly 
lacking, but methodologies or frameworks to combine uncertainties from different scales and scientific 
domains of simulations are even more clearly lacking. 

 This composition of uncertainties from multi-scale and/or multi-physics simulations is critical for 
making a complete safety demonstration. Very often in the NRS context, the coupling or chaining of 
different codes dedicated to different branches of physics must be considered when evaluating UQ of CFD 
results. In this situation, the UQ of CFD results might not be an end in itself. 

 The assembling of different uncertainties could probably be included in the global design 
methodology for a safety demonstration. One may suggest that it could be done with a global QPIRT 
approach, including approaches such as system, local CFD, and the final physics of interest. The current 
state of the art on these different steps for CFD application to safety investigations is the following: 

• Physical analysis has always been the first step of the whole process, but in terms of ranking, 
PIRT formalisation has become a more common starting point in safety demonstration studies. 

• Verification has to progress in terms of the documentation and its availability from the CFD code 
vendors and/or the developers. 

• Validation is often well documented but does not always use relevant metrics; comparisons of 
quantified experiments versus simulations and measurement uncertainties may be lacking. 

• Applications, notably full-scale reactor simulations, generally exhibit a lack of sensitivity 
analysis due to CPU cost and, as already mentioned, do not always take into account validation 
results.  

• Reassembling of different uncertainties for the final results of interest is rarely performed.  

Physical analysis
PIRT : Phenomena Identification Ranking Table

- Analysis purpose and  identifying the transient
- Dominant Parameters  (Figures of Merit)

- Identify and Rank Key phenomena with respect to their influence on FoM
- Dimensionless Numbers

Separate effect VALIDATION :
- Single phenomena
- Simple Geometry 

Integral VALIDATION :
- Coupled effects 

- Representative Geometry 

APPLICATION
VERIFICATION

-Equations  implementation
- Numerical methods 

Convergence
(code & solution verification) (2)

Chaotic Flow behaviour – Measurements  / Uncertainties Sources \ Input Data  - User effect

V&V (1)

(1) VVUQ : Verification, Validation & Uncertainty Quantification
(2) V&V in Scientific Computing - Oberkampft & Roy 2010

CFD for NR Safety Demonstration : a methodology for VVUQ (1)

NUMERICAL PHYSICAL

 
Figure 3.2. Links between PIRT, V&V, and UQ 
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4.  SOURCES OF UNCERTAINTY IN LWR THERMAL-HYDRAULIC SIMULATIONS 

4.1 The various sources of uncertainty in CFD applications to LWR 

Theoretically, the sources of uncertainty in single-phase CFD are the same as for system codes, but 

practically there are major differences in the relative weight of each source. 

Here is a list of potential sources: 

1. Initial and boundary conditions: When there is a flow entering the domain of simulation, the inlet 

flow parameters often have a high uncertainty. For example, the mass flow rate at a pump outlet 

can be hard to assess accurately because of uncertainties in the pump signature, unsteady flow 

rate, or unknown pressure. More generally, initial and boundary conditions may result from a 

system code calculation which gives only the 1D (area averaged) flow parameter whereas, CFD 

requires 2D inlet profiles. Some simple assumptions may be used to give inlet profiles of 

velocity, temperature, and turbulence intensity among others. When thermal coupling with 

metallic structures plays a role, initial and boundary conditions are also required and might 

necessitate rough approximations if detailed information is not available. 

2. Uncertainties related to the parameters of physical models: Wall functions – if used – to express 

momentum and energy wall transfers and parameters of turbulence models (e.g., C1, C2, Cm, Prk 

and Pr ε of the k-ε model) are sources of uncertainty in the same way that all closure laws of 

system codes are. Experts in turbulence may argue that these parameters were derived from basic 

flow configurations and cannot be changed; however, models may be used beyond their domain 

of applicability, and one may assign uncertainties related to this extrapolation. 

3. Uncertainties related to non-modelled physical processes and uncertainties related to the form of 

the models: Models may have inherent limitations. For example, an eddy viscosity model like k-ε 

or k-ω cannot predict a non-isotropic turbulence nor an inverse-cascade of energy from small 

turbulence scales to large ones.  

4. Choice among different physical model options: When BPGs cannot give strong arguments to 

recommend one best model option, one may consider all the possible model options compatible 

with BPGs and consider the choice itself a source of uncertainty. This is called a “categorical 

variable” in the extended propagation of uncertainty methods described in section 6.2. 

5. Numerical uncertainties: Numerical uncertainties are related to the discretisation and to the 

solving of the equations. They include time discretisation errors, spatial discretisation errors, 

iteration errors, and round-off errors. BPGs give recommendations to control such errors. 

However, a certain level of residual error may be accepted if one can estimate the resulting 

uncertainty band on the prediction. 

6. Choice among different numerical options: When BPGs cannot give strong arguments to 

recommend one best numerical option, one may consider all the possible numerical options 

compatible with BPGs and consider the choice of the option as a source of uncertainty. This is 

also a “categorical variable” in the extended propagation of uncertainty method described in 

section 6.  
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7. Simplification of the geometry: The geometrical details of a reactor may have some impact on the 
resulting flow. In code applications, some simplifications of the geometry may be adopted, and in 
all cases, details smaller than the mesh size are not described. This creates some non-controlled 
errors which should be considered in the UQ process. 

8. Uncertainties due to scaling distortions: Situations may exist in which one can determine the 
uncertainty of input parameters in a given range of flow conditions characterised by geometry 
and the values of some non-dimensional numbers. In reactor applications, the geometry and 
values of some non-dimensional numbers can be out of the given range. In such a case, one 
should assign some uncertainty due to extrapolation from other geometry or other values of non-
dimensional numbers. 

9. Uncertainty due to previously measured data: Information coming from previous data may be 
used in a simulation, for example, the physical properties of fluid and solids. This information is 
known with some uncertainty, which will also affect the global uncertainty of code predictions. 

10. Uncertainty arising from physical instabilities and/or chaotic behaviours: Under certain 
circumstances, nonlinear dynamic systems like Navier-Stokes equations can exhibit chaotic 
behaviours. Manneville (2010) reminds us that chaos results in unpredictability in the long term 
despite the fact that determinism guarantees predictability in the short term. Chaotic behaviours 
can be computed with small changes in the input data. The result has to be treated in a 
probabilistic framework. Since UQ generally appends in a probabilistic framework, there are 
ways to deal with such flows. 

 It's difficult to evaluate separately each source of uncertainty separately and at different scales 
(scaled mock-up and full reactor). ASME and EDF approaches (see sections 8 and 12)   distinguish two 
types of uncertainties: 

• A distance, bias, or scatter of simulation relative to reality when calculating IETs or CETs; and 

• A scatter of the simulation results due to the multi-configuration of numerical parameters of the 
CFD simulation – a part of these parameters is selected during the validation, and it is not 
possible to set other parameters like initial conditions (ICs) and boundary conditions (BCs) or the 
mesh. 

The uncertainties due to initial and boundary conditions may be propagated by the code. 

 Figure 4.1 shows a possible classification of the different sources of uncertainties for CFD. Note that 
the sources (2, 3, 8, and 9) identified above are not considered in this figure. The top square in the figure 
represents the global set of parameters for a given CFD simulation; the blue parts represent the parameters 
which are fixed by the V&V, e.g. the best turbulence model, boundary laws; the ones in green are related 
to ICs and BCs; and those orange show the relationship between the mesh and the numerical options of the 
code.  

 Using various sensitivity calculations and validation results, the bias and the scatter of CFD 
uncertainties must be determined. The final combination of uncertainties may need a probabilistic 
distribution of CFD results. 
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Figure 4.1. Identifying sources of uncertainty  

4.2 Differences between system codes and single-phase CFD codes with respect to uncertainty  

Apparently, large differences with respect to uncertainty exist between single phase CFD tools and system 
codes which solve mainly two-phase problems: 

• Single phase CFD tools have very few physical models (e.g. turbulent viscosity, wall functions); 
whereas, system codes include hundreds of closure laws for wall transfers and interfacial 
transfers for each flow regime and for each flow geometry. 

• Single phase CFD tools propose many options for the physical models (e.g. k-ε, k-ω, RSM, SST, 
RNG k-ε, LES, DES); whereas, system codes generally propose one set of standard validated 
closure laws. No extended validation exists for each physical option.  

• Single phase CFD tools propose many options for the numerical scheme, while system codes 
generally propose one (i.e., CATHARE, ATHLET, TRACE, and SPACE codes) or two 
numerical schemes (i.e., RELAP-5 and TRAC codes). 

• Single phase CFD tools do not propose a comprehensive validation matrix for each set of 
physical and numerical options; in contrast, system codes generally propose a very large, 
validated matrix – including both SETs and IETs – applied to a standard set of closure laws.  

 Single phase CFD tools may have CPU time difficulties running simulations with a converged 
meshing and time step. Therefore, many applications may have significant numerical errors. Such 
numerical errors may be equal or larger than the error due to physical modelling. System codes may also 
use non-converged meshing, but generally, the numerical error remains significantly smaller than the error 
due to physical modelling; thus, the former may be forgotten in the uncertainty analysis. 

• Single phase CFD tools are able to simulate the effects of small-scale geometrical details of the 
flow; whereas, system codes are macroscopic tools that simplify the geometry of the flow, and 



29 

the effects of small-scale geometrical details (e.g. the geometry of spacer grids in a fuel 
assembly) are embedded in the closure laws, which were fitted on prototypical experiments. 

 In summary, one can list favourable and unfavourable aspects of UQ for single phase CFD 
compared to system codes. 

 The favourable aspects are: 

• Single-phase flow issues depend on a relatively small number of non-dimensional numbers. In 
the list of governing non-dimensional numbers for mixing problems, the Reynolds and Prandtl or 
Schmidt numbers are always present; the Froude number is present in the case of density effects; 
a Nusselt number is present in case of heat transfer with walls; and in some transients, a Strouhal 
number – or other numbers – may be present; the available experiments may more or less easily 
cover the domain of similarity with respect to these numbers. In two-phase flows treated by 
system codes, many non-dimensional numbers exist, and no experiment can satisfy all of them; 

• Single-phase CFD tools have very few physical models for which the uncertainty has to be 
determined; 

• The simplifications of flow geometry for single phase CFD tools are less frequent and more 
limited than those in system codes; consequently, the portability of a physical model from a 
specific geometry to another is easier. 

 The unfavourable aspects are: 

• When extrapolating from a scaled experiment simulation to a reactor simulation, the scalability of 
the numerical scheme, of the nodalisation, and of the physical models has to be investigated; 

• If CFD is used with some degree of simplification of the geometry, the impact of such 
simplifications need to be taken into account in the uncertainty evaluation;  

• Methodologies for uncertainty evaluation which require many calculations would be very 
difficult to apply to CFD due to high CPU cost; 

• Since several options for the physical models (e.g. turbulence, wall laws) and several numerical 
schemes are possible, if BPGs do not give precise criteria to select the best option, this represents 
an additional source of uncertainty which must be taken into account; 

• The absence of the results of a comprehensive validation matrix for single phase CFD does not 
help in the UQ process; quantifying the different sources of uncertainty listed in section 4.1 is 
more difficult than for system codes. This is the case for uncertainties related to the parameters of 
physical models. Indeed, the analytical experiments in which only a few of these models are 
influential are very specific (plane channel, isotropic homogeneous turbulence, etc.). More 
complex experiments exist, such as jets, plumes, and flows with obstacle, but they are difficult to 
use due to the overly high number of potentially influential parameters. The difficulty is still 
more important for the so-called categorical variables, such as the choice among different 
physical model options or among different numerical options: What level of probability can be 
given to each option? The hypothesis of equi-probability for each option is not necessarily 
justified. 

 

  



30 

 

5.  CLASSIFICATION OF METHODS FOR UNCERTAINTY QUANTIFICATION 

Code uncertainty methodologies for reactor thermal hydraulics were first developed for system codes 
which simulate many kinds of transients in an extensive range of single phase and two-phase conditions. 
They were based either on “propagation of the uncertainty of input parameters” (so called uncertainty 
propagation methods) or on “accuracy extrapolation” methods (see d’Auria and Galassi, 2010). Nowadays 
there are different software frameworks or platforms dedicated to uncertainty quantification. For instance 
we may mention URANIE1 the Uncertainty and Sensitivity platform developed by CEA. It aims at 
capitalising all methods and algorithms about uncertainty and sensitivity in the same framework and in 
particular it comprises most of the methodologies presented hereafter. 

5.1 Methods based on propagation of uncertainties 

The methods using propagation of code input uncertainties for thermal hydraulics with a link to NRS 
issues follows the pioneering idea of CSAU (NED Special Issue, 1990), later extended by GRS (Glaeser et 
al., 1994). This is the most-often-used class of methods. First, uncertain input parameters are listed and 
include initial and boundary conditions, material properties, and closure laws. Probability density functions 
(PDFs) are determined for each input parameter. Then the parameters are sampled according to their PDFs, 
and the reactor simulations are run with each set. In the GRS proposal, a Monte Carlo sampling is 
performed with all input parameters being varied simultaneously according to their PDF.  

 Perhaps because it relies on a limited number of assumptions, the Wilks theorem is often used to 
treat the results of uncertainty propagation and makes estimating the boundaries of the uncertainty range on 
any code response with a given degree of confidence possible. The number of code runs for an acceptable 
degree of confidence is around 100, although a higher number of code runs, typically 150 to 200, is 
advisable for better accuracy on the uncertainty ranges of the code responses.  

 More generally, propagation of uncertainties typically requires many calculations to reach 
convergence of statistical estimators, which may be difficult with CFD because of the amount of CPU time 
necessary. Fortunately, relatively simple statistical tools can give an estimate of the uncertainty resulting 
from datasets of limited size (bootstrap and Bayes formula, for example).  

 In the domain of uncertainty propagation methods, there are three trends: 

• The Monte Carlo method uses a rather large number of simulations with all uncertain input 
parameters being sampled according to their PDFs. The resulting PDF of any code response is 
established, and the accuracy does not depend on the number of uncertain input parameters. 

• Use of meta-models: in an attempt to reduce the number of code simulations, some methods 
consider only the most influential uncertain input parameters. These methods do a few 
calculations varying these uncertain input parameters in order to build a meta-model which 
replaces the code in order to determine the uncertainty on any code response with a low CPU 
cost. The Monte Carlo method is used with these meta-models performing several thousand runs. 
The use of meta-models such as polynomial chaos expansion and kriging became popular. These 

                                                      
1. http://sourceforge.net/projects/uranie/ 

http://sourceforge.net/projects/uranie/
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meta-models provide a mapping between uncertain input parameters and model results built on a 
limited number of model evaluations. They necessarily rely on assumptions of regularity, or 
continuity, or shape of model responses and should be considered with caution when the 
assumptions are difficult to verify. Basically, in such a case, one might replace the non-
convergence uncertainty of propagation methods that is rather easy to estimate with uncertainties 
due to approximations inherent in meta-models, which are more difficult to calculate. 

• Unlike the first two, the deterministic sampling method does not attempt to propagate entire 
PDFs. Rather, it propagates statistical moments. The deterministic samples are chosen such that 
the known statistical moments are represented. If only the mean and the standard deviation, i.e., 
the first and second moments, are known, the uncertainty can be represented by two samples. 
They are chosen such that they have the given mean and the given standard deviation. Three 
samples are enough to represent the first four moments of a Gaussian distribution. Arbitrarily 
higher moments can be satisfied by adding more samples into the ensemble. This method does 
not suffer from the curse of dimensionality. Not only the variance of the marginal distributions 
but also covariance can also be built into the ensemble The method is very lean in number of 
samples, but the challenge lies in finding the right sampling points. Often, weighted samples need 
to be introduced. 

 Logically, uncertainty propagation methods require preliminary work to determine the uncertainties 
of closure laws. This determination can rely on expert judgement or, for a better demonstration, on 
statistical methods based on various validation calculations. Determining the uncertainty band or PDF for 
each closure may be easy when data sensitive to a single closure law are available. This is a SET in the full 
sense. In practice, data are often sensitive to multiple closure laws, and methods have been developed to 
determine uncertainty bands or PDFs for multiple closure laws based on several data comparisons with 
predictions (see de Crécy and Bazin, 2001–2004)  

5.2 Accuracy extrapolation methods  

For system codes, the methods identified as propagation of code output errors are based upon the 
extrapolation of accuracy. One can cite UMAE (d'Auria and Debrecin, 1995) and CIAU (d’Auria and 
Giannotti, 2000; see also Petruzzi and d’Auria, 2008). An extensive validation of system codes on both 
SETs and IETs allows the measurement of the accuracy of code predictions in a large variety of situations. 
In the case of UMAE and CIAU, a metric for accuracy quantification is defined using the Fourier 
Transform. The experimental database includes results from different scales, and once the accuracy of code 
results is assumed not to depend on the scale, this accuracy is extrapolated to reactor scale. 

Methods based on extrapolation from validation experiments possibly require only one reactor 
transient simulation, but many preliminary validation calculations of integral test facilities are required. 

5.3 The ASME V&V20 

The ASME V&V20 standard for V&V in CFD and heat transfer states that “The concern of V&V is to 
assess the accuracy of a computational simulation” (2009). This view is clearly compatible with the 
principle of the methods based on extrapolation from validation experiments.  

 In current industrial CFD models (non-DNS), results come from solving a part of the Navier-Stokes 
equations and from modelling a part of these equations. Verification of correct solutions for these 
equations – called solution verification in Oberkampf and Roy (2010) – can be considered “tractable” even 
for complex flows. Once it is done, physical model uncertainty is a legitimate concern.  

 Different experiments tend to give significantly different model parameter values in calibration 
processes, indicating that the form and the generality of the model itself must be questioned. For example, 
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see different non-dimensional mixing lengths between 0.07 and 0.16 for different academic flow 
configurations in Rodi (1980). 

5.4 Comparison of methods 

Methods based on validation result extrapolation offer a poor mathematical basis but the comparison with 
reality, even in scaled experiments, may give an idea of the impact of model inadequacy on results at full 
scale. Even the impact of non-modelled phenomena is taken into account when we compare simulations to 
experiments, which is not so clear for uncertainty propagation. Obviously, extrapolation of results from 
scaled experiments to full scale is almost impossible to justify rigorously, regardless of the method used. If 
we were able to precisely estimate the physical model uncertainty, we would also be able to define a 
perfect model. 

 Another difference between the methods of propagation and extrapolation is the possibility of 
performing sensitivity analysis. Methods based on propagation allow such an analysis by using the results 
of the runs already performed for the uncertainty analysis. Sensitivity analysis is impossible with methods 
based on extrapolation because they do not consider individual contributors to the uncertainty of the 
response. 

 Benchmarking of system codes for the methods belonging to the two different classes was made as 
part of two international projects launched by OECD/CSNI. These are identified as UMS (OECD/CSNI, 
1998) and BEMUSE (de Crécy et al., 2007). A significant lesson from these benchmarks is that the 
methods have now reached a reasonable degree of maturity, even if the quantification of uncertainty of the 
closure laws remains a challenge in propagation methods.  

 For CFD, no relevant benchmark has been established yet for comparing different approaches to test 
cases. Previously, we saw that uncertainty propagation and uncertainty based on validation result 
extrapolation are different in their nature and in their goals. In this context, setting up a relevant benchmark 
case to compare approaches belonging to these different classes seems essential. 

5.5 The role of validation in SETs and IETs/CETs in the UQ process  

All types of thermal-hydraulic codes, including system codes and CFD codes, use some kind of averaged 
equations. Local instantaneous equations such as continuity, Navier-Stokes, and energy equations are exact 
equations, but they cannot be solved directly due to excessive CPU cost. Averaging – time averaging, 
space averaging, or both – is necessary to reduce the time and/or space resolution to a degree that makes 
the calculation reasonably expensive. However, due to the averaging, some terms of the equations require 
some modelling to close the system of equations. Such relations are usually obtained by a theoretical 
derivation plus some fitting on appropriate experimental data. These models are approximations of the 
physical reality and cannot provide exact prediction of the averaged flow parameters. One can try to 
estimate the domain of uncertainty of these models or closure relations by using the same data basis and by 
finding the multiplier values which allow prediction of an upper and lower boundary of the data. This may 
result in a PDF for the multiplier.  

 This process may be executed using SETs in which one particular model or closure law is sensitive. 
In other SETs, measured parameters may be sensitive to a few models. In some cases, if various flow 
parameters are measured, one can identify the sensitivities in each influential model and determine the 
uncertainty of each model. 

 In IETs or CETs, all models of the code may have some influence on the parameters of interest. 
Estimating the relative weight of each model in an IET simulation is very difficult. Such IETs may be 
useful in the UQ process if they simulate the reactor transient of interest. The sensitive models and the 
relative weight of each sensitive model are similar in the IET and in the reactor transient. Such an IET or 
CET can thus be used to determine the error or uncertainty of code results applied to the reactor transient. 
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 The uncertainty propagation methods mainly use SETs in the UQ process; whereas, accuracy 
extrapolation methods use more IETs. Both methods may require some scale extrapolation since both SETs 
and IETs are reduced-scale tests which cannot respect all non-dimensional numbers.  

 All types of thermal-hydraulic codes have intrinsic limitations related to phenomena which are not 
modelled. System codes use closure laws obtained for steady established flows in transient non-established 
flows, and the phenomena associated with non-establishment or transient effects are not modelled. This is a 
source of uncertainty. CFD codes use turbulence models which can never describe all geometrical effects 
in complex industrial geometries, meaning that all non-modelled effects comprise another source of 
uncertainty. 

 Simulation of IETs, which represent a reactor transient, with all the geometrical complexity takes 
these sources of uncertainty into account. However, if scale distortions between the IET and the reactor 
exist, it is never guaranteed that the relative weight of all sources of physical model uncertainties, 
including both closure model uncertainty and uncertainty relative to non-modelled physical processes, is 
similar which makes extrapolation difficult. 

 In the end, the comparison between simulations and experimental data is the only way to measure 
the error or uncertainty related to the physical model, but since often the only data available are reduced 
scale data, issues of scale extrapolation may be unavoidable in the UQ process. 
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6.  AN UNCERTAINTY PROPAGATION METHOD EXTENDED TO CFD 

6.1 Short description of the method 

The method studied at Commissariat à l’énergie atomique (CEA) comes from the method used for system 
codes and is based on the propagation of input uncertainties. It is broadly used worldwide, for example, in 
the BEMUSE benchmark (de Crécy et al., 2007). For uncertainty analysis, this method consists of 
performing Monte Carlo code runs without using a meta-model. Consequently, numerous code runs of the 
CFD code are needed, typically 100 or even more. After completion of the code runs, order statistics are 
used to obtain statistical quantities for the responses, such as percentiles or tolerance intervals. By using 
the results of the performed code runs, a simple sensitivity analysis of the first order can be performed after 
the uncertainty analysis. 

 A very important advantage of this method is that there is no limit on the number of input 
parameters that can be considered. In addition, several types of input parameters can be considered. One 
can include initial and boundary conditions as well as parameters related to the physical models. 
Considering different options for physical modelling, for example, turbulence modelling, and for numerical 
schemes such as convection schemes is possible if BPG do not give clear recommendations on the best 
option. It is done by the use of so called “categorical variables”, more frequent in CFD codes than in 
system codes. Consequently, many sources of uncertainty quoted in section 4.1 are considered in this 
method. 

 One drawback of this method is that estimating the PDFs of these numerous input parameters is 
necessary. This estimation is challenging, and no method for that has been well investigated. Nevertheless, 
this drawback exists for all the methods based on the propagation of input uncertainties. 

 The main drawback specific to the CEA method is the high number of code runs needed, which can 
be a critical issue in CPU-consuming time reactor calculations. But one can hope that CPU time will 
decrease in the near future as technologies continue to develop. To avoid such CPU expense, methods are 
being investigated in which  expensive runs of the most complex models are combined with relatively 
cheap runs using, for instance, degraded meshings, i.e. multi-level code models. A third drawback of the 
method is that all the code runs have to be successful for a proper application of the order statistics. This 
difficulty is not insurmountable but can require increasing the number of code runs, as shown in the 
application described in section 6.3. 

6.2 Categorical variables and their treatment 

Discretisation schemes are typical examples of categorical variables. For example, if the BPG 
recommendations are not clear enough, the user has different choices for the time scheme: explicit Euler, 
Runge-Kutta order 3, Cranck-Nicholson, etc. These alternatives correspond with different “levels” of the 
variable “time scheme”, which are neither numerical nor continuous. Consequently, this type of variable 
requires a specific treatment and can pose some difficulties.  

6.2.1. Difficulty for uncertainty analysis 

The first possible difficulty is with uncertainty analysis. Using statistics order requires that the PDF of the 
response is continuous. In other words, the different values of the response obtained by propagation must 
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be all different. The presence of categorical variables may introduce a certain degree of discontinuity in 
this PDF. More precisely, if all the variables were categorical, the PDF would be “perfectly 
discontinuous”, with a succession of peaks, each corresponding to the value of the response for a given 
combination of the levels of the categorical variables. With the mixing of categorical and real variables, the 
PDF of the response is smoother, but a certain level of discontinuity can still be present. This issue was 
investigated in the application described in section 6.3. 

6.2.2. Difficulty for sensitivity analysis 

The second difficulty concerns sensitivity analysis. Since categorical variables are not numerical, standard 
sensitivity measures such as standardised regression coefficients or correlation coefficients cannot be used. 
Two new measures are proposed. 

 The first type of sensitivity measure is based on regression techniques as used in the analysis of 
variance (ANOVA), where the presence of categorical variables is very frequent. Let us use H to denote 
the categorical variable, and let us assume that it has 𝑛𝑛 different levels. The linear regression is performed 
by replacing 𝐻𝐻 with (𝑛𝑛 − 1) real coded variables, denoted as 𝐻𝐻1 ,𝐻𝐻2 …𝐻𝐻𝑛𝑛−1, the values of which are 0, -1, 
or 1, according to Table 6.1: 

Table 6.1: Values of the real coded variables 𝑯𝑯𝟏𝟏 ,𝑯𝑯𝟐𝟐, … ,𝑯𝑯𝒏𝒏−𝟏𝟏 ,  associated with a categorical 
variable 𝑯𝑯 with 𝒏𝒏 levels 

Levels of the 
categorical 
variable 𝐻𝐻 

Value of 𝐻𝐻1 Value of 𝐻𝐻2 … Value of 𝐻𝐻𝑘𝑘 Value of 𝐻𝐻𝑛𝑛−1 

Level 1 1 0 0 0 

Level 2 0 1 0 0 

… Level 𝑘𝑘 0 0 1 0 

Level 𝑛𝑛 -1 -1 -1 -1 

 Performing the linear regression using 𝐻𝐻1 ,𝐻𝐻2 …𝐻𝐻𝑛𝑛−1  makes it possible to obtain (𝑛𝑛 − 1) regression 
coefficients for these coded variables: ℎ1 for 𝐻𝐻1, ℎ2 for 𝐻𝐻2, …, and ℎ𝑛𝑛−1 for 𝐻𝐻𝑛𝑛−1. The last regression 
coefficient ℎ𝑛𝑛 is deduced from the other ones by: ℎ𝑛𝑛 = −ℎ1 − ℎ2 −⋯− ℎ𝑛𝑛−1.  

Finally, if:  

• there are nRV real variables, denoted as Xi, in addition to the H categorical variable; 

• the regression coefficients of the Xi real variables are denoted as ai; and 

• the response is denoted as Y, 
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 Then the linear regression is written as follows if the 𝐻𝐻 categorical variable is at its level: 

𝑌𝑌 = 𝑎𝑎0 + �𝑎𝑎𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑖𝑖 + ℎ𝑘𝑘 

 And if the empirical frequency of the 𝑘𝑘𝑡𝑡ℎ level of 𝐻𝐻 is denoted as 𝑝𝑝𝑘𝑘 (close to 1 𝑛𝑛⁄  if the levels are 
equi-probable), the contribution of 𝐻𝐻 to the variance of the response is estimated using the following 
equation 
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 The second type of sensitivity measure is based on correlation coefficients for the real variables and 
on conditional variance of the expectation value of 𝑌𝑌 knowing 𝐻𝐻 for the categorical variables. More 
precisely, for the real variables, if 

• the correlation coefficient of the response Y and of the Xi real variable is denoted as ρ(Xi, Y), and 

• the empirical variance of the response is denoted as va�r(Y), 

 then the contribution of  𝑋𝑋𝑖𝑖 to the variance of the response is classically estimated by 

𝜌𝜌(𝑋𝑋𝑖𝑖 ,𝑌𝑌) × 𝑣𝑣𝑎𝑎�𝑟𝑟(𝑌𝑌) 

 For the categorical variables, if 𝑒𝑒𝑘𝑘 is the mean value of 𝑌𝑌 when 𝐻𝐻 is at its level 𝑘𝑘, then the 
contribution of 𝐻𝐻  to the variance of the response is estimated using 
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 i.e., the conditional variance of the expectation value of 𝑌𝑌 knowing 𝐻𝐻: 𝑣𝑣𝑣𝑣𝑣𝑣[𝐸𝐸(𝑌𝑌 𝐻𝐻⁄ )]. 

 Both formulas for the contribution of 𝐻𝐻 to the variance of the response are very similar, but the ℎ𝑘𝑘 
regression coefficients are different from the 𝑒𝑒𝑘𝑘 mean values of 𝑌𝑌 knowing 𝐻𝐻. Studies performed by CEA 
to date show that both measures give the same dominant input parameters. The two methods are an 
extension of the classical methods used for system codes; they are also rather crude and give only the 
dominant parameters, since they are first order approximations. Their advantage is that they do not require 
performing additional code runs with beyond those already performed for uncertainty analysis. 

6.3 An application case: “The heating floor” 

The method proposed by CEA was applied to a case with experimental data, the so-called “heating floor”. 
An uncertainty analysis is completed, and the uncertainty bands are compared to the experimental data. 
Sensitivity analysis using both sensitivity measures described above has not yet begun but is planned in the 
near future. 

6.3.1. Description of the experiment and the reference calculation 

The principle of the heating floor is summarised in figure 6.1. The heating floor consists of a square, cold 
cavity filled with air at 15°C and of a hot floor at 35°C. The cold air at 15°C enters the cavity at the top 
left-hand corner, and air exists the system in the bottom right-hand corner. 
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Figure 6.1: General scheme of the “heating floor” 

 The flow is stationary and presents convection and buoyancy effects. It is calculated by the CFD 

code Trio_U developed by CEA. A 2D modelling and a k-ε modelling of the turbulence are used. Many 

input variables are considered, as explained below, including several categorical variables, but for 

convenience, the turbulence modelling is fixed. 

The available experimental data are 

• Profiles of temperatures and the vertical component of the velocities on the horizontal straight 

lines defined as y = 0.1, 0.52, and 0.9 m. 

• Profiles of the horizontal component of the velocities on the vertical straight lines defined as x = 

0.1, 0.52 and 0.9 m. 

 A reference input data deck is defined with a choice for the different numerical options made by 

expert judgement. In particular, a finite volume elements (FVE) meshing (see figure 6.2) consisting of 

30×30  quadrangles divided into four triangles in the bulk of the cavity with two layers of meshes near the 

walls. The fluid is supposed to be incompressible, and to satisfy the Boussinesq’s hypothesis.  
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Figure 6.2: The finite volume element meshing used for the reference calculation 

6.3.2. The input-uncertain parameters 

The first step in the CEA method is defining input uncertain parameters and quantifying their uncertainty. 

Twenty-seven input parameters were considered and are briefly listed below: 

• Parameters related to meshing: 

o Type of meshing: finite volume differences (FVD), FVE, or industrial meshing with as many 

equilateral triangles as possible (ICEM); 

o Number of meshes in the bulk of the cavity; 

o Number of layers of meshes close to the walls. 

• Parameters related to the numerical schemes: 

o Convection schemes; 

o Weighting factor α for the ef_stab convection scheme (weighting between a centred second 

order scheme and an upward first order scheme); 

o Time schemes (implicit or explicit with implicit diffusion); 

o Security factor on the time step in the case of an implicit time scheme. 

Physical modelling parameters: 

o Fluid density (only dependence on temperature as in Boussinesq’s hypothesis or the 

additional dependence of the density on pressure); 

o Wall laws, both for velocities and temperatures: 

- Standard laws or thin boundary layer equations (TBLE) type laws; 

- The Von Karman constant. 
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• Parameters of the k-ε model: Cε1, Cε2, Cε3, Cµ, Prk, Prε, PrT.. 

• Physical properties: thermal conductivity, viscosity, and thermal expansion – two possibilities for 

the definition of temperature used to calculate them. 

• Initial and boundary conditions: V, k, ε  and T at the inlet and floor temperatures. 

 Nine of the variables are categorical, such as the choice of meshing and the type of convection 

schemes, and 18 are real continuous variables. Some variables are dependent. For example, the allowed 

convection schemes are neither the same used for FVD models nor for FVE and ICEM models. In the same 

way, the security factor on the time step is different from one only for implicit schemes. This method takes 

these dependencies are taken into account. 

 The input parameters are numerous and miscellaneous. The exception to this is that due to the fact 

that considering multiple turbulence models would have increased the difficulty of the study significantly, 

only the k--ε  model is used for the turbulence model.  

 Arbitrary uncertainties are assigned to these parameters. The real variables are supposed to obey a 

normal law, often with a standard deviation equal to 5% of the reference value except the temperatures and 

the inlet velocity, because in these cases, experimental uncertainties were available. The different levels of 

the categorical variables are supposed to be equi-probable.  

6.3.3. The propagation step 

The adopted experimental design is simple random sampling (SRS) as advised in BEMUSE for the system 

codes (de Crécy et al., 2007). One hundred code runs were simultaneously launched. The duration of each 

code run varied greatly ranging from 5 minutes to 1.5 days. The longer calculations were those with lower 

security factors on the time step and the finest meshing, FVE and ICEM types. 

 Many code runs fail. In addition, some code runs converge perfectly but toward obviously wrong 

solutions: for example, towards temperatures not included in [15; 35]°C or a central eddy rotating in the 

wrong direction. For a correct application of the order statistics, these failed or spurious code runs cannot 

be simply discarded and replaced by other ones with new combinations of the values of the input 

parameters. Consequently, the reason of these failures or strange results is systematically investigated. A 

number of coding “bugs” are found in Trio_U. But the main finding is that the reference input data deck is 

not optimised, although it follows the Trio_U user’s guidelines written some years ago when the input data 

deck was defined. The main inadequacies of the reference input data deck are as follows: 

• No bounded value of the turbulent viscosity; 

• Different time solvers for the three types of equations: momentum, turbulence and energy; 

• k and ε at the inlet incorrectly calculated; 

• No progressive meshing for FVD and FVE. An example of correct FVE meshing is shown in 

figure 6.3: 
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Figure 6.3:  Example of correct meshing for an FVE modelling 

 An important lesson learnt from this study is that the inadequacy of the input data deck is apparent 
only for a few combinations of values of the input parameters. Both reference calculations, with or without 
correction produce very close results. 

 All the code runs are performed again using the improved data deck: In the end, 300 to 400 code 
runs were carried out for this study. 

6.3.4. Results of the propagation step 

For each point of the different profiles (T, Vx, and Vy profiles as described above), the 2.5% and 97.5% 
percentiles were obtained by order statistics. The 100 response values were ranked from lowest to highest 
with the third value and the ninety-eighth value noted as the 2.5th percentile and the 97.5th percentile, 
respectively.  

 The potential difficulty mentioned above regarding the non-perfect continuity of the PDF of the 
responses due to the presence of categorical variables did not materialise. All the values of the responses 
were different, and ranking them by increasing order does not pose any problems. 

 The uncertainty bands derived from the 2.5th and 97.5th percentiles widely envelop the experimental 
data for the three temperature profiles, as shown in figure 6.4 for the temperature in the bottom part of the 
cavity. 
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Figure 6.4: Uncertainty band derived from the 2.5th and 97.5th percentiles for a temperature profile 

 The results are not as good for the velocity profiles, especially for Vx on the vertical straight line x = 
0.1 m in the left part of the cavity and for Vy on the horizontal straight line y = 0.1 m in the bottom part of 
the cavity, as shown in figure 6.5.  
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Figure 6.5: Uncertainty band derived from 2.5
th
 and 97.5

th
 percentiles for 2 velocity profiles (on the left the 

horizontal component Vx; on the right vertical component Vy). The black ovals superimposed on the graphs 

indicate the zones where the experimental data are not bounded by the uncertainty band. 

6.3.5. Conclusion for the study 

The method was successfully applied. Considering categorical variables did not raise particular problems, 

in contrast to what was expected. The main difficulty in this study was the high number of failed or 

spurious code runs. All of them had to be corrected, which required improving the initial reference input 

data deck. A total of 300 to 400 code runs were needed for correct application of the method; whereas, the 

initial number of code runs defined for the Design of Experiment was 100. Propagation is requiring both 

for the code and the reference input data deck. 

 Despite the high number and the diversity of the input parameters, the uncertainty bands do not 

envelop the experimental data perfectly. Several possible explanations for this exist. The first is that the  

k-ε model used for turbulence is perhaps not most appropriate, and considering different turbulence models 

might have been a better approach. A second possible explanation is that the 2D model of the cavity 

prevented taking any 3D effects into account. Lastly, the ranges of variation of the input parameters were 

arbitrarily determined, and perhaps they were not wide enough. 

 This study must be completed by conducting a sensitivity analysis using the new sensitivity 

measures defined for the categorical variables. Knowing the relative contribution of each input parameter 

to the global variance of the responses could allow researchers to make a more valid and accurate model 

with better prediction capabilities.  

6.4 Conclusions regarding the method 

From a theoretical point of view, this method is simple, and its application to a case such as the “heating 

floor” does not pose unsurmountable problems. Here is a summary of the advantages and drawbacks of the 

method. The main advantage of the method is that it can consider numerous and varied input parameters. 

Nevertheless, varying the numerical schemes as done in the application case, for example, is perhaps 

questionable. Following the BPG would be more advisable, but they do not give always clear indications, 

as for this application case. Estimating an error band coming from the discretisation error with a method 

such as Richardson’s extrapolation and Grid Convergence Index (GCI) (ASME V&V, 2009; Roache) 

might be preferable, but the discretisation error is not representative of the all the potential sources of 

numerical uncertainty (e.g. the choice among different meshings).  
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 An important issue not really tackled in the application case is the UQ of the input parameters. This 
difficulty exists for all methods based on the propagation of input uncertainties, for example methods 
based on meta-models. It is even more challenging for the CEA method because of the use of categorical 
variables. Up to now, no method exists to assign a probability to each possible response for a given 
categorical variable.  

 As previously stated, the main drawbacks of the method are the high number of code runs required 
and the fact that all of them must be successful. 

6.5 Characteristics of the method  

This method is based on the propagation of the uncertainty of input parameters. It does not use a meta-
model. The method addresses uncertainty due to IC and BC and to physics as related to the parameters of 
physical models and the choice among different physical model options. By considering different 
numerical options, the method partly addresses uncertainty due to numerics. Using this method can make it 
possible to calibrate parameters such as those related to physical model, but this possibility has not still be 
applied. 

 However, several issues are not taken into consideration in this model. It does not address 
uncertainty related to non-modelled physical processes or uncertainty due to the simplification of the 
geometry. Neither the scaling issue nor discretisation, iteration, or rounding errors are considered. 

 This method requires numerous calculations as well as SET data. SET data are needed for the 
quantification of the uncertainties of input parameters such as those related to physical models. Up to now, 
this task has not been performed. A maximum of number of SETs has to be considered, but only 4–5 
calculations of each SET are necessary. IET data are not used by the method. A minimum of 100 reactor 
calculations are needed. One hundred fifty to 200 code runs would be preferable. 

 The degree of maturity of the UQ method applied to CFD is low: The method has been established 
but should be improved and applied to simple test cases but not yet to a reactor calculation. Nevertheless, 
the degree of maturity of this method when applied to system codes is high, as shown in the BEMUSE 
benchmark.  
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7.  UMAE METHOD APPLIED TO CFD 

The University of Pisa is starting a study aimed at developing an uncertainty evaluation methodology for 
CFD application to NRS. Such a methodology is to be derived from, or inspired by, the Uncertainty 
Method based on Accuracy Extrapolation – Code with the capability of Internal Assessment of Uncertainty 
(UMAE-CIAU) methodology already available for system thermal-hydraulic NPP analysis. Basically, it 
would inherit the fundamental concept of obtaining uncertainty information through an extrapolation 
process from accuracy information stored in a “qualified” validation database. Hence, it would also involve 
methods and criteria for qualification, for example, of code, models, users, and experimental data, for the 
evaluation of accuracy, etc. 

7.1 Brief description of UMAE 

The UMAE (sketched in Figure 7.1) was proposed by the University of Pisa in the late 1980s and then 
further developed (see D’Auria et al., 1995; D’Auria et al., 1998; IAEA SRS N.23, 2002). Contrary to 
other methods, which address the evaluation of individual input uncertainties and their propagation through 
code application, the UMAE focuses on the “propagation of code output errors”. Information on accuracy 
is stored in a suitable validation database, and the final uncertainty is obtained by extrapolating the 
accuracy from relevant integral experiments to the NPP scale. The possibility of performing such 
extrapolation relies on the following basic principles and assumptions: 

1.  ‘The direct extrapolation of experimental data is not feasible; nevertheless, time trends of 
significant variables measured during counterpart tests in differently scaled facilities are quite 
similar: this fact must be exploited. 

2. Phenomena and transient scenarios occurring in larger facilities, keeping nearly constant the 
other conditions (e.g. design criteria, quality of instrumentation, etc.), are closer to the plant 
conditions than  those recorded from smaller facilities. 

3. “Qualified” codes are indispensable tools to predict plant behaviour during nominal and off-
nominal conditions. 

4. The confidence in predicting a given phenomenon by the code must increase when increasing the 
number of analysed experiments related to that phenomenon. 

5. The uncertainty in the prediction of plant behaviour cannot be smaller than the accuracy 
resulting from the comparison between measured and calculated trend; furthermore, accuracy 
(uncertainty) must be connected with the complexity of the facility (plant) and of the considered 
transient. 

6. The effects of user and nodalisation must be included in the methodology.’  

 In short, application of the UMAE consists of an iterative process involving validation against 
experimental data that aims to achieve “qualified” nodalisations, i.e., such that the related prediction 
accuracy meets given acceptance thresholds. By applying similar criteria, a qualified nodalisation for the 
NPP analysis (referred to as an/the analytical simulation model) is obtained, provided that the similarity of 
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the phenomena observed in the test facilities and predicted by the plant calculations is demonstrated by 
proper analysis. In addition to nodalisation qualification, user qualification plays a crucial role. 

 Once a qualified NPP nodalisation is available, a single calculation is sufficient for a given transient, 
and the related uncertainty can then be obtained by accuracy extrapolation from a relevant database that 
has been collected. Uncertainty methods based on the propagation of input uncertainties require several 
sensitivity calculations and hence huge computational costs, while involving less effort in the qualification 
process and relying on engineering judgement to a larger extent. 

 The accuracy evaluation is another key step in the UMAE; it involves appropriate metrics for 
quantification and acceptance criteria. The accuracy evaluation “tool” adopted by the University of Pisa in 
the framework of UMAE-CIAU is the Fast Fourier Transform based methodology (FFTBM, see 
Ambrosini et al., 1990 and Prošek et al., 2002), which uses appropriate FoM to characterise the 
discrepancies between code calculation results and experimental data in the frequency domain. This 
“automated” approach somewhat reduces the influence of the engineering judgement upon the code result 
evaluation, although some degree of engineering judgement is still involved in setting acceptance 
thresholds, which to some extent are arbitrary. 
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Figure 7.1: UMAE flow diagram (also adopted within the process of development and application of 

CIAU) 

 The key steps of the UMAE methodology, partly summarised above, are indicated in the flow 
diagram in Figure 7.1. In particular, 

• The starting point is the selection of a “frozen” code version (a) resulting from a general 
qualification process (b), based on which it can be considered a tool of wide-spread international 
use. 

• The red loop (FG) on the right side of Figure 7.1 represents the qualification process for the code, 
the nodalisation, and the code user in relation to the capability to predict an assigned transient. 

o The ITF nodalisations (c) are developed by qualified users. 

o The code validation is based on specific experimental data (d) that must include all key 
phenomena that are expected to occur during the transient of interest. 
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o The ITF calculation (e) is immediately followed by a qualitative analysis aimed at checking 
whether all relevant thermal-hydraulic features are captured, a necessary condition to 
proceed. Such a check involves a thorough characterisation of both the experimental data and 
the calculated results by subdividing the time frame into phenomenological windows (PhW) 
and then identifying key phenomena (KPh) and relevant thermal-hydraulic aspects (RTA) in 
each PhW, thus verifying the consistency between calculations and experiments. 

o If the qualitative analysis step is successful, an accuracy quantification step (f) must be 
performed to characterise the code prediction by suitable figures of merit. A specific method 
is necessary. The one adopted by the University of Pisa is the FFTBM, which includes a set 
of acceptance criteria. 

o Then, the fulfilment of the user and nodalisation qualification acceptance criteria is checked 
(g). 

o The qualification process is complemented by the use of “generic” experimental data (h), 
which may not include all the key TH features of the transient of interest, and thus, they 
cannot take part in the accuracy extrapolation process but can still be used for independent 
validation. 

• In case of success, the user can proceed via GI with the development of the NPP nodalisation (i), 
taking advantage of the experience gained in developing the ITF nodalisations. 

• The NPP calculation (j) involves two steps: 

a. a facility Kv-scaled calculation: boundary and initial conditions derived from ITF (via 
proper scaling) and 

b. a realistic conditions calculation: nominal conditions used as boundary and initial conditions. 

• The qualitative and quantitative analysis of the results of the two above calculations must show 
“similarity”, and the respective PhWs and RTAs must show consistency (k).  

• If this check is successful, the nodalisation (or set of nodalisations) can be considered as 
“qualified” for the NPP analysis (m). It is referred to also as an analytical simulation model 
(ASM). Needless to say, the model must be run using “qualified code” by a “qualified user”. 

• Provided that a number of conditions are met (see D’Auria et al., 1994 for details), and with the 
help of statistics, the accuracy in predicting target results can be extrapolated from the validation 
database, the data in which were gathered during the qualification process, to the NPP scale (l). 

• The extrapolated accuracy is assumed to be the uncertainty affecting the ASM calculation results 
(n). 

7.2 Short description of CIAU 

CIAU was proposed in 1997 and has further developed and applied ever since (see IAEA SRS N. 23, 2002, 
and D’Auria and Giannotti, 2000) with the intent of overcoming the limitations of other existing 
uncertainty methodologies, particularly the large computational effort required for their application and the 
strong user effect upon the results of the uncertainty methodology application. 

CIAU is a software tool that couples the RELAP5 code2 to the UMAE approach3 and automatically 
provides uncertainty evaluation associated with a specific NPP transient calculation in the form of 
uncertainty bands enveloping the code results for selected target variables. 

                                                      
2. The approach is extendable to any other system code. 
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The CIAU implementation and use, sketched in Figure 7.2, relies on the following concepts: 

1. the UMAE qualification process (described above); 

2. the “status approach” for characterising nuclear plant transient scenarios;  

3. the separation and recombination of time-error and quantity-error; and 

4. the error-filling and error-extraction processes. 

 The “status approach” involves the use of an arbitrary set of six relevant TH quantities representative 
of the selected scenario (such as upper plenum pressure, primary loop mass inventory, steam generator 
pressure, cladding temperature at 2/3 of core active height, core power, the largest of steam generator down 
comer collapsed levels) plus the time elapsed since the transient start to identify the status of the plant. In 
other words, the plant status corresponds to a point in a seven-dimension phase space. Furthermore, if all 
the dimensions of such phase space are discretised, the status is then uniquely identified by a hypercube. 
The evolution of the plant during the transient is represented by a succession of hypercubes.  

 A key assumption is that the code prediction uncertainty, for selected output variables, is the same 
for all plant statuses falling within each discrete plant state. Therefore, by means of an uncertainty 
evaluation method – particularly by the accuracy evaluation of experimental test simulations performed in 
the framework of the UMAE qualification process –, a seven-dimension matrix of “quantity uncertainties” 
and a vector of “time uncertainties” can be filled up (error-filling process) so as to constitute a sort of 
uncertainty database that can be “looked up”. 

 With the availability of the uncertainty database, the application of the CIAU requires negligible 
computing effort and engineering judgement. Instead, those efforts were invested in the filling process. 

 Within the CIAU framework, the UMAE is considered more as a tool for qualifying the 
TH calculations needed to populate the hypercubes than as a method for uncertainty evaluation. 

Although the influence of the user is inherently minimised by the application of the UMAE, the residual 
user effect is taken into account as a contribution to the overall uncertainty. 

                                                                                                                                                                             
3. In principle, a different UQ method could be implemented in the CIAU as well.  
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Figure 7.2: Simplified flow diagram of CIAU 

Here is the key to Figure 7.2: 

• Part related to CIAU development: 

a. Availability of “qualified” experimental data is implied. 

b. Availability of “qualified” system code calculation results is implied (qualified code + 
computer + nodalisation + user). 

c. Reference is made to selected postulated transients, characterised by using the “status 
approach”. 

d. Qualitative, quantitative, and time accuracy are obtained through proper analysis and 
comparison of experimental data and code results.. 

e. A number of variables are selected as targets for the uncertainty evaluation. 

f. Provided that acceptance criteria are met according to UMAE through step (d), a quantitative 
accuracy matrix is completed.  

g. A time accuracy vector is also completed. 

h. The scenario independence check must verify whether or not the calculated uncertainties in 
each hypercube are affected by the transient type. 

i. If the scenario independence check is not satisfied, then the ranges of variation of the driving 
quantities must be changed or the transient type must be identified inside each hypercube. 

m. If the scenario independence check is satisfied, uncertainty values can be directly assigned to 
each plant status. Thus, a quantity uncertainty matrix (QUM) is generated. 

n. A time uncertainty vector (TUV) is also generated. 

• Part related to CIAU application: 

o. Once the QUM and TUV are available, the CIAU code application is straightforward. 
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p. An ASM calculation is run for a selected transient scenario. The six selected driving 
quantities (see above) are used to identify the succession of hypercubes that corresponds to 
the calculated transient. 

q. If a failure occurs or if the uncertainty quantification is not required, the process stops here.  

r. In order to characterise the transient status, time intervals are identified as well. 

s. By looking up the obtained hypercubes and time intervals in the database, quantity 
uncertainty is obtained. 

t. Time uncertainty is also found by accessing the database.  

u. By means of the proper computing tool embedded in CIAU, the above quantity and time 
uncertainties are combined to obtain continuous lower and upper uncertainty bands. 

7.3 Towards a UMAE-CIAU-like approach to CFD UQ 

The basic goals/objectives are to develop the following 

1. a qualification methodology similar to UMAE as applicable to CFD based on systematic and 
consistent exploitation of experimental data and on proper scaling and similarity analysis, which 
allows computational models with proven and quantified prediction capabilities to be obtained 
and to gather accuracy information for uncertainty extrapolation purposes; 

2. a database of accuracy and uncertainty information obtained from the validation against 
differently scaled test facilities and possibly real plant data, using the application of the above 
method, and 

3. an automatic tool similar to CIAU which allows the “internal assessment of the uncertainty” 
while minimising the computational effort and the impacts of user effect and engineering 
judgement. 

 The first major task is to define unambiguous qualification criteria for a code, for a code user, for a 
computational model, and for calculation results. Many qualification-related aspects have already been 
addressed by the BPGs (Mahaffy et al., 2007), which provide some useful guidance regarding model 
selection, mesh generation, code and calculation verification, and error reduction and quantification 
techniques. However, the BPGs do not include detailed guidance on specific applications or scaling and 
similarity analysis, nor on criteria for accuracy evaluation. Therefore, although the BPGs are a key 
reference, they need to be extended and complemented by additional guidelines. 

 Within a UMAE-like iterative qualification process, the accuracy evaluation plays a crucial role: 
This is the point at which decisions are made as to whether a given model is providing “acceptable” results, 
both qualitatively and quantitatively. The following needs can be identified: 

• A rigorous approach to the qualitative analysis of code calculation results, aimed at assessing the 
code/model/user capabilities to exhibit all the thermal fluid dynamic aspects that are deemed 
relevant for the specific problem addressed in their predictions. For example, in a problem 
involving perturbation of time and space distribution of the coolant properties inside the reactor 
pressure vessel (RPV), first checking if a calculation has been able to reproduce the 
“morphology” of such a perturbation (which is very sensitive to the type of transient, to the 
presence of buoyancy, to possible asymmetries in the loop flows, etc.) may be important. 
Proceeding with the quantitative analysis if the qualitative predictions are unsatisfactory could be 
useless. Obviously, this step necessarily requires engineering judgement.  

• Suitable metrics for the quantification of the accuracy require that one be able to make statements 
as to “how far” (in quantitative terms) a given calculation is from the simulated experiment. This 
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step may be more difficult for CFD than for TH system code analysis as multi-dimensional and 
multi-variable quantities are inherently involved. An attempt was made at the University of Pisa 
(see Moretti and D’Auria, 2014) to address this issue and propose a method to quantitatively 
compare CFD code results and experimental data for in-vessel mixing flow problems. 

• Accuracy acceptance criteria, consistent with the adopted accuracy quantification metrics, and 
possibly connected with NPP licensing requirements are needed. 

 Another crucial aspect is the scaling and similarity analysis of both experiments and calculations. 
The following needs have been identified: 

• The scaled test facilities and the experiments selected for the qualification process must be 
proved to be representative of the relevant phenomena and processes occurring at the NPP scale. 

• Differently scaled test facilities must be referenced in order to perform the necessary assessments 
regarding model performance and the scale effect upon the code. 

• The accuracy of code predictions must be proved not to diverge at increasing scales; otherwise, 
the assumption that the accuracy can be extrapolated fails and a UMAE-like approach cannot be 
applied. 

 Other important aspects to be addressed, in view of a translation of the UMAE-CIAU framework for 
CFD UQ purposes, are 

• Identification and classification of relevant phenomena, processes, situations of interest, 
scenarios, etc. 

• Identification of the specific needs and peculiarities of CFD compared to TH system codes, e.g. 
mesh related issues, accuracy quantification techniques, scaling. 

• Making available a “generically qualified code” of criteria involving V&V and Quality 
Assurance (QA). 

• Availability of suitable experimental data based on criteria to specify the level of quality in data 
that is required for the qualification purposes, e.g. CFD-grade data supplied with experimental 
uncertainty information, proper characterisation of BICs, and so on) 

• Account of the experimental uncertainty should be included in the uncertainty evaluation. 

• To address the user-effect issue, a sort of user self-qualification process should be implicit in the 
methodology as it is in UMAE-CIAU; possibly, criteria should be specified in terms of user 
qualification. 

• Techniques to extrapolate the uncertainty from the accuracy, possibly involving statistical tools, 
need to be developed. 

 Among the fundamental concepts of the UMAE-CIAU methodology are the “status approach” and 
the multi-dimensional, coarsely-discretised phase space defined by a set of selected driving quantities. If – 
and to what extent – such concepts can be extended to the CFD application domain needs to be 
investigated. 

 The development work should create not only a methodology but also software tools to support 
practical implementation of the methodology. At a minimum, the software framework should include 
and/or support the following functions: 

• Storage, management, and analysis of the experimental database; 

• Automated accuracy quantification (similar, for example, to FFTBM tools); 
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• Storage, management, and analysis of the code assessment database (e.g. code results, 
calculation-to-experiment comparisons, error/accuracy/uncertainty information); and 

• An automated accuracy-to-uncertainty extrapolation tool. 

 In its initial stage, the development of the methodology should focus on a limited spectrum of NPP 
applications for which a reasonably wide validation basis is available. The most appropriate choice seems 
to be the single-phase in-vessel coolant flow: boron dilution/mixing, asymmetric temperature distribution, 
PTS, accounting also for buoyancy, conjugate heat transfer, etc. A number of test facilities that have 
provided noticeable amounts of “mixing data”, albeit with a rather limited range of scales, and have fed 
intensive code validation activities within the international community exist. Defining separate approaches 
for steady-state and transient problems may prove necessary. 

 Even assuming that a complete and exhaustive methodology is developed and becomes available 
soon, along with the necessary software support tools, its implementation would certainly require intense 
engineering and computational effort before a relevant accuracy/uncertainty database can be established. 
Creation of the database will probably be the main challenge, however well motivated by the attractive 
idea of a fast and automated procedure for the CFD uncertainty extrapolation to NPP the nuclear 
engineering community is. 

7.4 Characteristics of the method 

The method is based on the extrapolation of uncertainty from accuracy. It does not use any meta-code. 
Neither does it individually address the uncertainty due to physics, numerics, nor geometric simplifications 
nor due to any other individual source of uncertainty. All contributions to the uncertainty of the calculation 
results are accounted for collectively, including the user effect. No specific method to address the scaling 
issue has been developed yet; however, the methodology necessarily requires that the scaling issue be 
addressed. No code calibration on data is envisaged. 

 As a part of the UMAE-like qualification process and particularly as a means to collect accuracy 
information from the validation and store it into an accuracy database, both SET and IET calculations are 
required. Under certain conditions, uncertainty can be extrapolated from the SET and IET calculations; 
therefore, the more SET and IET calculations that can be incorporated, the better, provided that qualified 
experimental data sets are available. As far as the uncertainty evaluation step is concerned, once a qualified 
model has been setup and an accuracy database is available, a single reactor calculation is sufficient: No 
further validation calculations, sensitivity analyses, etc., are necessary. 

 Currently, the level of maturity of this UQ method is very low: The basic ideas and the roadmap for 
the development have been established, and experience from the development of UMAE and CIAU can be 
exploited; however, most of the developmental work has yet to be performed. Moreover, a successful 
implementation of the method will certainly require an upgrade of the existing experimental database in 
order to make qualified data available for the UMAE-like qualification process and to support the scaling 
analysis. 
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8.  SUMMARY OF THE ASME METHOD 

The American Society of Mechanical Engineers (ASME) has worked on a standard for V&V and UQ for 
CFD and heat transfer applications (ASME V&V 20-2009). 

 The ASME standard conforms to Nuclear Regulatory Commission (NRC) and other regulatory 
practices, procedures, and methods for the licensing of nuclear power plants as embodied in the United 
States Code of Federal Regulations and other pertinent documents such as the Regulatory Guide 1.203 
“Transient and Accident Analysis Methods” and NUREG-0800 “NRC Standard Review Plan” . 

 The standard V&V 20-2009 affirms that “The ultimate goal of V&V is to determine the degree to 
which a model is an accurate representation of the real world”. This standard is strongly based on the use 
of experimental data for V&V and consequently for UQ. With this approach, ASME makes a strong link 
between V&V and UQ. 

 The global VVUQ process is given below in Figure 8.1. This diagram only deals with uncertainties 
at the experimental scale. An additional step can be used to upscale from experimental to reactor scale. 

 
 

𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣 = �𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛2 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 + 𝑢𝑢𝐷𝐷2  
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Figure 8.1: Errors and uncertainties in the validation process (reprinted with permission from ASME V&V 
20-2009,) 

 

 According to the standard VV-20-2009, the comparison error E in any validation process is defined 
as the difference between the simulation result, denoted by S, and the experimental value D. This 
difference is expressed by means of the equation: 

𝐸𝐸 = 𝑆𝑆 − 𝐷𝐷 

 If we denote T as the true value, then the comparison error can be split into the following: 

𝐸𝐸 = 𝑆𝑆 − 𝑇𝑇 − (𝐷𝐷 − 𝑇𝑇) 

 Then, one defines the experimental data error 𝛿𝛿𝐷𝐷 and the simulation error 𝛿𝛿𝑆𝑆, as follows:  

𝛿𝛿𝐷𝐷 = 𝐷𝐷 − 𝑇𝑇 

𝛿𝛿𝑆𝑆 = 𝑆𝑆 − 𝑇𝑇 

 Because the simulation error 𝛿𝛿𝑆𝑆 has three components, the first one is the error due to the modelling 
process 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚; the second is the numerical error 𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛 produced by the numerical algorithm and the 
discrete mesh used to solve the modelling equations; and the third is input errors (IC BC, 
properties,..;) 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . Therefore, the expression for the comparison error E can be written as 

𝐸𝐸 =  𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + ( 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛿𝛿𝐷𝐷) 

 Thus, E is the overall result of all the errors coming from the experimental data and the simulation. 
Three assumptions are made: (1) D is based on an average of individual measurements, (2) the error 𝛿𝛿𝐷𝐷 is 
computed using the ordinary methods of the experimental fluid dynamics, (3) the same assumption is valid 
for the experimental uncertainty 𝑢𝑢𝐷𝐷. Therefore, the uncertainty in the comparison error is given by the 
expression:  

𝑢𝑢𝐸𝐸 = �𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 + 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛2 + 𝑢𝑢𝐷𝐷2  

 The components of the simulation uncertainty that can be estimated are the numerical simulation 
uncertainty 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛, the input uncertainty 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and the experimental uncertainty 𝑢𝑢𝐷𝐷  . However, no known 
method to estimate the modelling uncertainty 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 exists. To solve this problem, the unknown error 
𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 produced by the modelling is isolated: 

𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸 − ( 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛿𝛿𝐷𝐷) 

 E, its sign, and its magnitude are known. Next, the validation uncertainty VU  is defined as an 
estimation of the standard deviation of the combination of errors  𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛿𝛿𝐷𝐷. If these errors are 
really independent, the combined validation uncertainty is given by the expression: 

𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣 = �𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 + 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛2 + 𝑢𝑢𝐷𝐷2  

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2  may be given by 

𝑢𝑢𝐸𝐸2 = 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒
2 + 𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣2  

 The ASME standard gives solutions to evaluate every term of the validation error (E) and the 
validation uncertainty (uval). Propagation methods are primarily used to evaluate uncertainties of input 
parameters. Uncertainties of numerical solutions are given by the code verification step. The standard 
indicates how to use E and uval. These quantities give an accuracy of the model used. If E >> uval, the 
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model used induced more error than the uncertainty indicating the model can be improved in order to 
reduce the uncertainty in the results. In contrast, if E < uval, the major uncertainty is in the uncertainty 
validation, which means that the model accuracy cannot be improved if this uncertainty cannot be reduced. 
The standard indicates that in individual cases, this is not proof that the model is good or bad but merely 
gives a warning about potential issues. The engineer has to evaluate the uncertainty according to his 
purpose. 

 ASME approach treats experimental and numerical results of interest as scalars with uncertainty. 
Oberkampf and Roy (2010) have described a similar methodology but for any kind of code results. 
Quantities of interest are considered “p-box”, which means probability distributions considering epistemic 
uncertainties. Same addition of terms is made to evaluate code uncertainties, but specific mathematics for 
probability distribution are used. This could/might be more suitable for complex quantity of interests (for 
example, CFD transient results). 

 Scaling uncertainty is not discussed in the ASME standard, but a chapter in Oberkampf and Roy 
(2010) is dedicated to “prediction”. The main issue in error and uncertainty evaluation for scaling is that 
the “real” quantity of interest at reactor scale is unknown. One option is to use only code results to evaluate 
scaling uncertainties. The main assumption is then that the variation of code results between the 
experimental facility and reactor scale is equivalent to the “real” variation between both scales. Another 
option is to use multiple experiments varying scaling factors like the Reynolds number or Froude number. 
If available, a set of experiments can lead to defining a validation domain that contains the application 
domain or provides some information for extrapolation outside of the validation domain. 

 The ASME standard methodology for uncertainty analysis underlines the role of V&V in the process 
of evaluating the confidence in CFD results. Uncertainties have to be evaluated step by step using clearly 
defined numerical aspects of the model such as time and space discretisation (time step and mesh 
convergence) or physical models (turbulence models, physical assumptions) with associated evaluation of 
error. 

8.1 Characteristics of the method 

The ASME method is not a UQ method for reactor application as it describes the UQ of a validation 
calculation. It does not address upscaling from the scaled experiment to the reactor. However, it may be 
used as a step in a general UQ method associated with an extrapolation method. Below is a summary of its 
characteristics. 

 It addresses uncertainty due to IC and BC, to physics as a whole, and to numeric. 

 It does not use a meta-code. 

 SET are not used in the method.  

 IET data are used in the method. 

 The ASME method also has some limitations. It does not address scaling issues. It does not 
specifically address uncertainty due to simplification of the geometry, but this may be included in the 
uncertainty due to numerics. There is no code calibration for the data. The maturity of the ASME method 
is low in the context of NRS applications. 
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9.  UNCERTAINTY QUANTIFICATION USING THE DETERMINISTIC SAMPLING METHOD 

The goal of this method is to predict how the results from a simulation are affected by one or more 
uncertain input parameters. These uncertain parameters might be any physical model constant, the value of 
a fluid or solid property, boundary condition values, or geometric parameters. The term deterministic is 
used as opposed to random. Random sampling is used in the Monte Carlo simulation, where the parameter 
values are randomly generated to satisfy a specified PDF. In the deterministic sampling (DS) method, the 
parameter values are instead calculated (Julier and Uhlmann, 2004; Hessling, 2013). Unlike the ensemble 
in the Monte Carlo method, which tries to represent a continuous PDF, the DS method represents the PDF 
with an ensemble that has the same statistical moments but contains much fewer samples. Each sample 
requires one simulation. In the DS method, the required number of simulations can be reduced 
substantially: by a factor of at least four orders of magnitude. This is key to be able to afford UQ in CFD 
and in all other simulations with long execution times. 

9.1 Statistical moments 

In DS, one tries to satisfy the statistical moments of a PDF. The first statistical moment is the mean, the 
second moment is the variance, the third is the skewness, and the fourth is the kurtosis or flatness. For a 
parameter, q, with an ensemble containing N samples, these can be written 
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 The nth statistical moment can be written 
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 Arbitrarily higher moments can be represented with DS by adding new samples to the ensemble. To 
represent the mean and the variance of a parameter, q, a minimum of two samples is required.  
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9.2  A one-parameter example  

A small example is set up to illustrate how the two methods compare. In this case, the Monte Carlo method 
is assumed to give the correct result but is computationally expensive. 

 Let f(q) be a nonlinear function where q is a parameter: 
4)( qqfh ==  

 Assuming the parameter q has a normal PDF with a mean value 𝑞𝑞� =2 and a standard deviation 
σq=0.4. A Monte Carlo simulation is performed and will be taken as the norm for this case and is compared 
to a DS simulation in which initially only two samples are used in the ensemble. In the original unscented 
transform (Angrisani et al., 2006) for one parameter, two samples in an ensemble can be chosen as 
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 The location of q1 and q2 are called sigma points. This ensemble has the same mean, and standard 
deviation as a continuous normal distribution. Propagating these two samples through the function will 
give us 
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 The output average and standard deviation from the ensemble, containing two samples, are; 
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 Figures 9.1 and 9.2 illustrate how many samples the Monte Carlo method requires to reach their 
designated values for the first two statistical moments of the input parameter q. 

 

Figure 9.1. Evolution of mean value for input parameter, q, with the number of Monte Carlo  (MC) 

samples 
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Figure 9.2. Evolution of standard deviation for input parameter, q, with the number of Monte Carlo(MC) 

samples 

 

Figure 9.3. Evolution of mean value for the output value, h, with the number of Monte Carlo (MC) samples 
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Figure 9.4. Evolution of standard deviation for the output value, h, with the number of Monte Carlo 

(MC)samples. 

 The asymptotic values for the mean and the standard deviation from the Monte Carlo simulation can 

be found in Figures 9.3 and 9.4. 
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 Each sample has a weight associated with it (see Julier & Uhlmann, 2004; Angrisani et al. 2006), 
and these are the weights chosen for this example:  

 

6
1

6
4

6
1

3

2

1

=

=

=

W

W

W

 

 

  



61 

Now the four moments are satisfied: 
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 By using these three samples we get 
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 which agree well with the results obtained from thousands of samples in the Monte Carlo method. 
This is achieved with just three deterministic samples. To be able to use the Monte Carlo method, a 
continuous PDF was assumed. From it, all the higher moments can be calculated. However, more often 
than not, not enough information is available to make this assumption. Often, only the variance, or 
covariance, and the mean value of a parameter are known. Applying a continuous PDF in such a case is 
pure guesswork, and the DS method will suffice. In addition, by including more samples in our ensemble, 
arbitrarily high moments can be represented, if they are known. 

 For the sake of comparison, a linear approximation (LIN) (see ISO GUM, 1995) of the function h = 
q4  gives the mean and standard deviation: 
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 Clearly the LIN-method gives a poor estimate for both the average and the standard deviation. 

9.3 Inverse uncertainty quantification 

Statistical moments in the DS method can be adjusted in two ways. One is to adjust the location of the 
sigma points; the other is to modify their weights. This can be exploited in inverse UQ and when 
calibrating models. The problem with inverse UQ is the difficulty in finding an inverse function which can 
be used to propagate a result back to its original parameters, the so called “inverse problem”. One common 
technique is to replace the original function with a simpler surrogate model or a response surface. 
However, there is no need for this in DS. While the parameters propagate non-linearly though the function, 
the weights do not. They propagate linearly in both the forward and the inverse problems. We can thus 
adjust the weights of our ensemble in the result so it will fit the statistical moments of results we are using 
as a reference. This reference must be trusted experiments or otherwise known data. If one accepts this 
view, there is symmetry between the forward problem and the backward problem. We can adjust the 
weights of the input parameters so their statistical moments fit with the information we have about them. 
We can do a similar process for the reverse problem. We can modify the weights to tune our ensemble 
from the calculations to fit with the statistics we have from the reference results. When applying these new 
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weights to the input parameters, we get a new estimate of how uncertain our input parameters are. We can 
do this due to the fact that the weights propagate linearly. This gives us the uncertainty of the input, and no 
expert judgement is necessary. This uncertainty includes model inadequacies that are systematic and 
epistemic.  

9.4 Summary 

The method of DS has been exemplified in a simple case, which demonstrates its efficiency compared to 
the Monte Carlo method. For a nonlinear function, the DS method is more accurate than a linear method of 
propagating the mean and the variance. Its accuracy increases with the number of statistical moments 
satisfied by the ensemble. The DS method is only shown here in a one-parameter case. For a problem 
including many uncertain parameters, the reader is referred to Hessling (2013). 

 9.5 Characteristics of the DS method 

The DS method propagates known statistical moments, not continuous distribution functions that are 
seldom known anyway. 

 DS does not require meta-code, but software that calculates the location of the sigma points and their 
weights is helpful. 

 It can include uncertainty in IC and BC as long as they are expressed as a function of parameters. 
Uncertainty due to the shape of a profile in BC or IC is not estimated at present, unless given as a function 
of the parameters. 

 The method has been used to estimate the uncertainty of the results due to uncertainty in the physical 
modelling constants. (See Nureth-16, 2015: “Use of Deterministic Sampling for Uncertainty Quantification 
in CFD”.) 

• Non-modelled physical processes (e.g. a k-ε model cannot predict a non-isotropic turbulence) can 
be treated with the DS method through an inverse uncertainty quantification step. By adjusting 
the sample weights in the simulated results, these can be made to fit the results from “true” data 
through regression analysis. The new weights can be applied to the uncertain input parameters, 
which now do not include any expert judgement. In this fashion, an estimate of the 
systematic/epistemic uncertainty can be made for the physical model and related to the 
parameters of physical models. 

• related to non-modelled physical processes (e.g., a k-ε model cannot predict a non-isotropic 
turbulence),  

• Choice among different physical model options.  

 If DS is used with a calibration step, it will include the uncertainty due to the numeric as well as the 
model uncertainties. For the problem below, it is not included. A Richardson extrapolation could instead 
give an estimate to the uncertainty. 

• Related to discretisation errors, iteration errors and round-off errors.  

• Choice among different numerical options:  

 The DS method is not addressing uncertainty due to simplification of the geometry. 

 The DS method can address scaling issues (e.g. scalability of code physics and numerics, scale 
distortion of validation data) by treating the Reynolds number, the Froude’s number, and so on as uncertain 
parameters. 

 DS has never been tested for SETs or IETs for reactor application. However, the method appears to 
be an example of having multiple uncertain parameters and/or multiple models. DS is probably the leanest 
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method when it comes to number of samples required. In addition, the number of samples does not grow 
quickly with the number of uncertain input parameters. When dealing with alternative physical models, DS 
assigns each model a sample, makes the calculation, and assesses the level of uncertainty in the result. In a 
calibration step, a weight could be calculated for each sample to produce the best result. In this way, DS 
can achieve a good mix of models. If uncertain parameters are present in the physical models, each model 
is given an ensemble of several samples that best represent its input parameters. If we have multiple 
models in addition to uncertain parameters in the physical models, DS makes ensemble of ensembles. DS 
treats parameters and physical models in a similar fashion. 

 The DS method can be favourably used for calibration purposes. Calibration can be performed by 
adjusting the sample weights to fit the expected value and covariance of the known and trusted results. 

 The minimum number of samples and/or calculations required for the DS method is the number of 
uncertain parameters (n) plus one, n + 1. In this case, the mean and the variance can be propagated. For 
higher statistical moments, additional samples are needed. 

 The degree of maturity of DS is low. 
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10.  POLYNOMIAL CHAOS EXPANSIONS 

10.1 Introduction 

CFD has become a powerful tool for many nuclear engineering applications due to rapid advances in 
numerical methods, parallelisation techniques, and the availability of high performance computers. To be 
useful in the licensing procedures typically performed in nuclear power plants, thermal-hydraulic system 
predictions using CFD simulations need UQ of the output results with a certain degree of confidence and 
coverage. Generally speaking, several sources of uncertainty must be evaluated: model parameter 
uncertainties, numerical uncertainties, experimental data uncertainties, BCs, and geometric uncertainties 
(Roache, 1997; VV20 Committee, 2009). 

 We tend to think of the Navier-Stokes equations as if they could exactly predict a laminar or 
turbulent flow, if provided with enough computational power (Badillo et al., 2013). Although these 
equations are based on rigorous conservation laws, they are not free of assumptions, which inevitably 
introduce a certain level of uncertainty into the results. For instance, in the derivation of the Navier-Stokes 
equations, shear stress is assumed to be linearly dependent on the strain rate with a constant of 
proportionality known as dynamic viscosity. Although this assumption is well supported by experimental 
observations, a certain degree of uncertainty will always be associated with any such measurement. Hence, 
shear stress defined in terms of the dynamic viscosity is, in essence, a stochastic variable. Thus, the first 
source of uncertainty in CFD comes from the measurement of physical properties. For highly turbulent 
flows, uncertainties inherent in physical properties might propagate through the hydrodynamic equations in 
a way that is difficult to anticipate and quantify. These kinds of uncertainties are not the only ones that can 
lead to considerable differences between simulation and experimental results. For example, uncertain 
models parameters (e.g. RANS and LES) and uncertain boundary conditions can also translate into 
important deviations from experimental observations. Thus, better agreement between experiments and 
simulations cannot always be achieved by improving the discretisation schemes, mesh quality, or linear 
solver in the numerical solutions of our models. By accepting that some boundary conditions and model 
parameters follow a stochastic process with a given probability distribution, we open the door to quantify 
the level of uncertainty introduced by these random variables in our numerical simulations.  

 To quantify the uncertainty in CFD simulations, there are two alternatives: intrusive and non-
intrusive methods (Xiu, 2003; Simon, 2010; Badillo et al. 2013). In both cases, uncertainties are introduced 
through a set of selected input parameters in the form of PDFs, although their propagation through the 
CFD code is different. Several variants of non-intrusive methods exist, which differ from each other on 
their sampling schemes, among other things. Several sampling techniques exist nowadays, including (i) 
Latin hypercube sampling, which builds equal probability bands for the sampling parameters (Olsson, 
2003); (ii) techniques based on the order statistics and the Monte Carlo sampling (Anderson, 1977, Muñoz-
Cobo et al., 2013), and (iii) techniques based on importance sampling.  

 Many scientists and engineers require the use of commercial packages to perform CFD simulations, 
and since these solvers are black boxes for most users, modifying them to use intrusive techniques is not 
possible. This is the main reason non-intrusive techniques are the most popular.  
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10.2 Uncertainty quantification using generalised polynomial chaos expansion methods 

In this section, we review the generalised polynomial chaos expansion (GPCE) method with special 
emphasis on non-intrusive techniques, which can be used with software packages such as FLUENT-
ANSYS, STAR-CD, and other commercial packages. Intrusive methods require the modification of the 
software and, therefore, their use is restricted to open source codes such as Open-FOAM or in-house 
developments. In section 2.3, we focus on the non-intrusive method that is a robust and mature technique 
developed to quantify the uncertainty propagation in complex systems. Section 10.3 is devoted to the 
application of the GPCE method to the evaluation of the uncertainty in a water mixing problem using a 
commercial code. 

1.1.1. The basis of Generalised Polynomial Chaos Expansion 

Before presenting the mathematical details of GPCE, it is important to describe the types of uncertainty can 
be handled with this technique. In general terms, uncertainty can be classified into two groups: epistemic 
and aleatoric. Najm (2009) describes uncertainties as epistemic when there is a lack of knowledge about a 
quantity whose true value does not display variability. In contrast, uncertainty arising from random 
variability is called aleatoric. The same author points out that the way to treat these two types of 
uncertainties depends on how probability is interpreted. For instance, from a frequentist viewpoint, only 
variables with aleatoric uncertainty can be assigned a PDF constructed from their observed variability. 
Using the same premise, there would be no basis for assigning a PDF to a variable with epistemic 
uncertainty. This sort of ambiguity could be avoided in the Bayesian framework, where probability is not 
necessarily seen as the result of a sampling experiment, but rather, as the degree of belief in a proposition. 
Thus, considering a Bayesian interpretation of probability, a PDF might still be assigned to a quantity with 
epistemic uncertainty, as long as sufficient information to construct it is available. Consequently, both 
epistemic and aleatoric uncertainties could be treated with a probabilistic approach within the Bayesian 
framework.  

 

 
Figure 10.1: Schematic of the uncertainty propagation in a nonlinear system 

 Polynomial chaos expansions are particularly suited for analysing and quantifying how the 
uncertainty inherent in a variable or parameter propagates through a determined system. The main idea 
behind UQ is depicted in Figure 10.1, where the system is represented by the green line. If we define a 

deterministic independent variable as𝜉𝜉, one point would represent the response of the system ( )ξRX = . 

Analogously, if an independent variable is described by a probability density distribution denoted by p(ξ ), 
the response of the system would be another unique probability density distribution )(X ξ . The 
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importance of using a robust technique for UQ can be better appreciated by analysing the two situations 

presented in Figure 10.1. If we know a priori the interval of confidence of our random variables [ ]ba ξξ , , 
we might be tempted to evaluate the response of the system at the extremes of this interval and thus have a 
quick estimation of the interval of confidence of the response with only two simulations. This could be 

useful if we are sure that the response will be effectively bounded by [ ]ba R,R , but in highly nonlinear 
systems, this assumption is very questionable because the response may easily lie out of this interval for 
many points  (see Figure 10.1). For this reason, several samples must be taken from the interval of 
confidence of a random variable and then post-processed to properly calculate the statistics of the response. 

 If the response of a system is a random variable ( )µθξ ,,))(( 2 BLRX Ω∈=  with ( )µ,, BΩ , the 
probability space is defined by the sample space Ω , a set of events (or outcomes) B  that has the structure 
of a σ-algebra (i.e., a non-empty collection of subsets of Ω  that is closed under the union and complement 

operations of its members), a probability measure µ   that maps B to the interval [0, 1], and ( )µ,,2 BL Ω  

the Hilbert space of all random variables whose norm2 −L  is finite (equivalent to consider stochastic 
second order processes), then the combined response PDF of an n-dimensional random parameter space of 
non-correlated variables is given by 
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  (Eq. 10.1) 

 where ( )ip ξ  represents the response PDF associated with the random variable iξ .  

 To clarify the meaning of ( )µθξ ,,))(( 2 BLRX Ω∈= , we consider second order random fields 
),,( ξtrX 

 that depends on N random variables ))(),...,(()( 1 θξθξθξ N=  with finite expectation or 
second moment: 
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 A GPCE is useful for representing second order random fields ),,( ξtrX 
such as pressure ),,( ξtrp 

and velocity ),,( ξtru 
 parametrically through the set of random variables { }N

ii 1)( =≡ θξξ . To prove that 

these random fields can be represented in terms of Askey polynomials denoted ),...,,(A in2i1in ξξξ , the 
following expansion (Xiu et al. 2003: Lucor et al., 2007; Meldi et al., 2012; Chen et al., 2013): 
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(Eq. 10.3) 

 In the Askey scheme, the type of polynomial depends on the PDF of the random variables
{ }N

ii 1)( =≡ θξξ . For instance, in the particular case of two random variables 21,ξξξ ≡ , if both variables 
follow a Gaussian distribution then the Askey polynomials are the Hermite polynomials. For the case that 
the random variables are uniformly distributed in a finite interval [a, b], the orthogonal polynomials are the 
Legendre polynomials. Table 10.1 displays the type of polynomial to be used in the Polynomial Chaos. 
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Table 10.1 Existing associations between the Wiener-Askey polynomials and the probability density 
function of input random variables 

 Input Random 
Variables 

Wiener Askey-Chaos Support 

Continuous Gaussian Hermite Chaos ),( ∞−∞  

 Gamma Laguerre Chaos ),0[ ∞  

 Beta Jacobi Chaos ]b,a[  

 Uniform Legendre Chaos ]b,a[  

Discrete Poisson Charlier Chaos { },...2,1,0  

 Binomial  Krawtchouk Chaos { }N,...2,1,0  

 Negative Binomial  Caos de Meixner { },...2,1,0  

 Hipergeometric Hahn Chaos { }N,...2,1,0  

 

 This set of polynomials forms an orthogonal basis for corresponding probability density function 
associated to the input random variables.  

 For a parameter space consisting of N random variables { }N
ii 1)( =≡ θξξ , Eq. (10.3) can be written in a 

more compact way (Badillo et al., 2013; Chen, 2013,) as 
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 (Eq. 10.4) 

 where a bijective correspondence between the Askey polynomials ),...,,(A in2i1in ξξξ and the 
orthogonal functions )(j ξΦ exists. In the same way, a one-to-one correspondence between the coefficients 

),(,...2,1 trc inii


and the coefficients )t,r(ĉ j


exists. The number of terms of the expansion is given by the 
following expression (Williams, 2006): 
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 where L is the truncation order of the polynomials.  

 The polynomials )(j ξΦ form a basis in the Hilbert space of the random functions ),,( ξtrf 
 with a 

finite second moment, i.e., )),,(( 2ξtrfE 
, here the operator E denotes the expectation operation. Because 

we are considering second order random fields, the family of functions that represent the random fields can 
always be expanded in orthogonal basis polynomials of the Askey family. These polynomials satisfy the 
following set of orthogonality conditions (Xiu and Karniadiakis, 2003):  
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2
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69 

where )(p ξ is the PDF of ξ  and ijδ the Kronecker delta. In practice, the polynomial type is chosen in such 
a way that the weighting function of these polynomials is the same one as for the PDF of the random 
variables that enter into the problem. For instance, the Laguerre polynomials with support ),0[ ∞  have an 
exponential weighting function, while the associated Laguerre polynomials have the gamma distribution as 
the weighting function. 

 In the case that we have several stochastic input variables that follow different probability 
distributions, the polynomials to be used are different for each variable. For example, for the case of the 
two variables 1ξ and 2ξ , if we denote the polynomials for the first variable by )( 1ξφi  and the polynomials 
for the second variable with )( 1ξψ j , the new basis is formed by the tensorial product

)()( 21),( ξψξφ jijik ⊗=Φ . The inner product of these basis functions is defined by 

 ∫∫=ΦΦ 2222'2111'1)','('),( )()()()()()(, ξξξψξψξξξφξφ dpdp jjiijikjik  (Eq. 10.7) 

 where the basis polynomials are now different for each variable but the GPCE has a similar structure 
(Badillo et al., 2013): 

...),,( 202,0111,1020,2101,0010,1000,0 ++++++= ψφψφψφψφψφψφθ cccccctrX 
(Eq. 10.8) 

 As previously, we can write the stochastic random field as follows:  
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The GPCE method applied to the Navier-Stokes equations by intrusive methods  

Two alternatives to apply the GPCE to the Navier-Stokes equations exist. The first one is based on an 
intrusive method that is not suitable for commercial codes such as ANSYS-CFX but is applicable to open 
source codes such as Open-FOAM. In the intrusive methods, a set of coupled Navier-Stokes-like 
equations, whose numerical solution requires changes in the solver, is obtained. 

 The starting point for the derivation of the stochastic hydrodynamic equations is the incompressible   
Navier-Stokes (Xiu and Karniadakis, 2003):   

 0u. =∇
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 (Eq. 10.10) 
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∂ −  (Eq. 10.11) 

 where p and u denote the pressure and velocity fields, respectively. These equations are transformed 
into stochastic conservation laws by assuming that the physical quantities p and u  are stochastic processes 
depending on the random parameter Ω∈θ . These stochastic random fields are then defined by the family 
of functions:  

 );,( θtruu 
=  (Eq. 10.12)  

 );,( θtrpp 
=  (Eq. 10.13) 
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 The next step is to perform a GPCE with Askey polynomials assuming that there is a finite number 
of stochastic variables{ }N

1ii )( =θξ , where the M is the number of terms of this expansion and depends on N 
number of stochastic variables and the truncation order L of the Askey polynomials. In general one can 
write 
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 (Eq. 10.14) 
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 (Eq. 10.15) 

 where ),( trui


 and ),( trpi


 are coefficients of GPCE. 

 The most interesting aspect of the expansions Eqs. (10.14) and (10.15) is that by means of these 
GPCEs the stochastic processes are decomposed in a set of deterministic functions ),( trui


 and ),( trpi


and 

multiplied by the basis polynomials { } 1
0
−

=Φ M
ii  that are independent of the space-temporal variables )t,r( 

and depend on the stochastic variables of the fields. Replacing these expansions into the Navier-Stokes 
leads to the following equation: 
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 Projecting Eqs. (10.16) and (10.17) onto the basis functions ))((k θξΦ


 yields 
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 where the coupling coefficient is given by 

 kjiijke ΦΦΦ=  (Eq. 10.20) 

 This set of M Navier-Stokes-like equations are coupled through the convective terms ijke  and 

jiΦΦ . The coupling coefficient ijke can be computed analytically and depends on the type of 
polynomials and their truncation order defined by the indices i,j,k. These equations can be solved by 
conventional numerical methods used in CFD (e.g. finite difference, finite elements, finite volume). Since 

),( trui


 and ),( trpi


 are the coefficients of the GPCE, the mean velocity and pressure fields are given by 
the zeroth order coefficient, which is 

 ),(),( 0 trutru 
=  (Eq. 10.21) 
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=  (Eq. 10.22) 
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 The second moment or cross-covariance between two points can be obtained as follows: 
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 which on account of the orthogonality property of the polynomials can be expressed in the form: 
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 The variance is given by 
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The GPCE method applied to CFD by non-intrusive methods 

In the non-intrusive GPCE collocation method used by Simon et al. (2010) and Badillo et al. (2013), a 
pseudo spectral expansion is used. The method relies on evaluating the solution at a finite number of 
collocation points, or samples, where relevant measures such as mean and standard deviation fields are 
obtained during a post-processing stage based on the solver evaluation. In this approach, the solver must be 
executed Nsamples times, varying the input stochastic variables in their respective support intervals. In the 
example that follows, we assume only two random input variables, i.e. 21,ξξξ = . Proceeding in this way, 

we obtain the pressure{ } samplesN
iirp 1),( =θ and the velocity { } samplesN

iiru 1),( =θ  fields at a set of collocation points 
of the random variables. Then one can obtain the coefficients of the expansion from the projection 
definition as in Simon (2010): 
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 As in the intrusive methods, the statistical moments up to second order can be computed in terms of 
the coefficients of the GPCE as  
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 This method is non-intrusive in the sense that it projects the stochastic solution directly onto the 
members of the orthogonal basis chosen to span the random space. The expansion coefficients can be 
calculated as in Badillo et al. (2013) to solve the following system of equations: 
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 If the number of collocation points Nsamples  is larger than the number of coefficients M, the 
system is over-determined, and an optimisation procedure is required to solve Eq. (10.30). The total 
number of random variables that can be handled simultaneously with polynomial chaos expansions 
(PCEs), depends only on the computational power available for the calculations. Eq. (10.5) presents the 
minimum number of calculations required to calculate the PCE coefficients for a given truncation order 
and number of random variables. As an example, if we consider six random variables 6=n  and a 
truncation order 4=p , the minimum number of simulations is 210=M . By decreasing the order of the 
polynomial chaos to 2=p , the number of simulations required is significantly reduced to 28=M , but the 
truncation error increases. 

10.3 Some results of CFD uncertainty calculations using the non-intrusive GPCE method 

The water mixing experiments conducted in the GEMIX-Facility (GEneric MIxing eXperiment) at the Paul 
Scherrer Institute focus on the basic mechanisms of turbulent mixing in the presence of temperature and/or 
density gradients under isokinetic mixing conditions. To study the fundamental mixing phenomena, co-
flow experiments were carried out in a square channel with Reynolds numbers covering the range of Re = 
5,000 to 60,000 at various relative densities (Metzner et al., 2006, Badillo et al., 2013). This section is 
devoted to the study of the uncertainty of the results obtained with ANSYS-FLUENT when simulating 
these experiments (see Figure 10.2).  

 Strictly speaking, stochastic variables can be introduced in a deterministic system only when a 
variable or parameter displays a certain degree of randomness, characterised by a probability density 
distribution. Nonetheless and as explained before, in a Bayesian framework, a probability density 
distribution representing the degree of belief in a proposition could also be assigned to a variable whose 
precise value is not known. Based on this idea, random parameters have been introduced to account for the 
variability of the inlet boundary conditions and of the turbulent Schmidt number (either epistemic or 
aleatoric) on the turbulent mixing of two fluids in a square channel. Despite the fact that the GEMIX 
experiment is well instrumented in the mixing section, velocity profiles and turbulence quantities were not 
measured in the inflow section. Although honeycombs and grids of different sizes were placed in the 
inflow section in an attempt to decrease the level of turbulence and propitiate a uniform velocity profile, 
accurate velocity profiles and turbulent quantities are not known at the location of the finest grid, which 
coincides with the inlet of our numerical setup (see Figure 10.3). Thus, only the mass flux at the inlet is 
known.   

 
Figure 10.2:  Schematic of the GEMIX experiment and inflow section of the GEMIX facility 

 In order to treat the uncertain boundary condition at the inlet, the velocity profile has been 
parametrised and assumed to be in between a fully developed (turbulent)  and a uniform velocity profile. In 

addition, turbulent quantities are described solely by the turbulence intensity 232 Uk=β , where k is 
the turbulence kinetic energy and U the mean velocity field. The velocity profile controlled by a single 
parameter α  is given by 
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 where the sub-indexes d and u stand for developed and uniform, respectively. Eq. (10.14) yields an 
interpolated velocity profile that satisfies the non-slip condition at the wall for ( )1,0∈α . In the present 
work, a uniform probability density distribution was assigned to all random variables.  

1.1.2. Simulation conditions 

One of the main objectives of this section is to present a simple methodology to quantify the uncertainty 
propagation, using non-intrusive techniques along with a commercial CFD package. The commercial 
software selected for this purpose was ANSYS-FLUENT© V.13 (publisher, year). All the simulations 
performed to quantify uncertainty propagation considered the standard ε−k  model with default values 
for all the coefficients, meaning the same holds for the models used to estimate the variability in the results 
arising from the selection of turbulence model. In addition, scalable wall functions were used to properly 
calculate the velocity field at the splitter plate where y+ is around 10. The mesh consists of 475’200 nodes 
(see Figure 10.3), and the SIMPLE algorithm was used to link the momentum and mass conservation 
equations. A second order upwind scheme was used to calculate the advection terms for all the variables. 
The mass flux at the inlet was equal to 1 kg/s in each leg, which translates to a velocity of 0.8 m/s, 
considering a uniform velocity profile and a density of 998 kg/m3 for water at T = 23°C.  

 
Figure 10.3:  Computational mesh with the numbers indicating the number 

 of nodes in each direction  

The quantification of the inlet uncertainty was carried out by fixing the turbulent Schmidt number at 
7.0=Sc and running 88 simulations, where the parameter α  controlling the shape of the velocity profile 

and the turbulence intensity β  were varied independently in a rectangular arrangement (see Figure 10.4). 
The fully developed velocity profile was obtained by an independent simulation in a small portion of the 
upper leg in the inflow section, considering periodic boundary conditions at the inlet and outlet. The 
support interval – where the variables are thought to be physically possible – was ( ) [ ] [ ]4,01,0, ×∈βα . In 
Figure 10.4, the points enclosed by red circles show a possible distribution which could provide similar 
results with a much lower number of simulations. In practice, 15 collocation points (if selected properly) 
should suffice, but in the present work, the regular matrix composed of 88 points will serve to investigate 
the dependence of the results on the configuration. These results will be presented in a forthcoming 
publication, along with the convergence of the PCE as a function of the polynomial order. To evaluate the 
influence of the variation of the turbulent Schmidt number, defined as the ratio between the turbulent 
kinematic eddy viscosity and the turbulent diffusion coefficient turbeddy DSc ν= , a combination of 



74 

5.0=α and 2=β was fixed, and only seven collocation points { }3.1,0.1,9.0,7.0,5.0,3.0,1.0=Sc  
were chosen in the support interval [ ]3.1,1.0∈Sc . In all the calculations, the PCEs were truncated at the 
fourth order. 

1.1.3. Results 

The combined effects of the uncertainty in the coefficient α  and the turbulence intensity β  at the inlet are 
shown in Figure 10.5. Mean values look similar to those obtained from deterministic simulations, but 
relevant insight is gained by the additional information provided by standard deviation. For the velocity 
field, the highest values for σ  are found right at the inlet, but that is not the case for the turbulent kinetic 
energy. For turbulent kinetic energy, the highest values are located inside the inflow section, which is a 
counterintuitive result. The mixing scalar (concentration) displays the highest standard deviation at the 
channel outlet, which can be explained in terms of the variability of the turbulent kinetic energy and the 
residence time of the fluid inside the channel. Since the turbulent diffusion coefficient is related to the 
turbulent kinetic energy through the Schmidt number and the turbulent kinematic eddy viscosity, the 
variability in the turbulent kinetic energy induces variability in the diffusion time along the channel. 
Hence, the longer the residence time inside the mixing section, the higher the variability (standard 
deviation) in the distribution of the mixing scalar.  

 A comparison of the calculated mean velocity and turbulent kinetic energy profiles with the 
experimental measurements is presented in Figure 10.6. Figure 10.7 shows the level of uncertainty 
introduced either by the inlet boundary conditions (left) or by the turbulent Schmidt number (right) on the 
mean concentration profiles. 

 The change in the shape of the turbulent mixing layer upon variation of Sc is presented in 
Figure 10.8, where the green colour signifies a concentration from 0.1 to 0.9. Figure 10.9 displays the 
mixing scalar field (concentration) and its associated standard deviation at the centre plane. Compared to 
the uncertainty introduced by the inlet boundary conditions, the standard deviation related to the variability 
of Sc is higher, but its overall distribution is similar. This is largely because the turbulent mixing for low 
Schmidt numbers (less than 0.3) is very high. With the selection of a normal probability distribution for Sc 
(with a mean value equal to Sc = 0.7), the large contribution to the errors bars from low Sc numbers can be 
attenuated if the standard deviation of the proposed distribution is small. Nonetheless, additional 
information is required to construct the appropriate probability distribution. Results evaluating several 
probability distributions for Sc will be presented in a forthcoming publication.  

 
 Figure 10.4: Collocation points for the coefficient controlling the velocity profileα   

and turbulence intensityβ  

 The variability in the results introduced by the turbulence model is mild compared to uncertainties 
introduced by the inlet boundary conditions or the turbulent Schmidt number. Figure 10.10 shows the 
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velocity, turbulent kinetic energy, and concentration profiles at two locations inside the mixing section 
obtained using the standard ε−k , realisable−− ek , ω−k , SSTk −−ω , and RSM. Concentration 
and turbulent kinetic energy distributions at the outlet are presented in Figure 10.10. Slight differences are 
observed in the concentration distribution at the outlet; however, the distribution predicted by RSM 
resembles the experimental results more closely (not shown in this paper). The turbulent kinetic energy 
predicted by RSM also departs from the other models, especially close to the walls. Despite mild 
differences in the results, the evolution of the thickness of the turbulence mixing layer along the channel is 
well captured by all the models.  

 

 
Figure 10.5: Stochastic CFD results for turbulent mixing: Mean values and standard deviation for the 

most relevant quantities are shown at the centre plane of the computational domain. 
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Figure 10.6: Mean velocity and turbulent kinetic energy: Error bars correspond to a 1±  standard 
deviation and consider only the variability in the inlet boundary condition. 

             
Figure 10.7: Dimensionless mean concentration profiles: The effects of uncertain inlet boundary conditions 

and turbulent Schmidt numbers are presented on the left and right, respectively. 

 

 

 
Figure 10.8: Influence of the turbulent Schmidt number on the shape of the mixing layer: Each figure 
shows the results of a deterministic simulation for 5.0=α and 2=β . The green colour represents a 

concentration range from 0.1 to 0.9.  

 

mm70=x mm450=x
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Figure 10.9:The dimensionless mean concentration and standard deviation for a stochastic Schmidt 

number: The results were obtained by using PCE to combine the seven simulations. 

 

 

 
Figure 10.10: Deterministic profiles at the centre plane for five turbulence models. All simulations 

considered 5.0=α , 2=β  , and 7.0=Sc . 

 

 

 

 
 

Figure 10.1:– The crosswise dimensionless mean concentration (left) and the turbulent kinetic energy maps 
(right) at the outlet obtained with five turbulence models 
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10.4 Conclusions 

In this section, we have the intrusive and non-intrusive GPCE methods for quantifying the uncertainty in 
stochastic random fields. These methods are a well-established and robust techniques that allows for the 
evaluation of the uncertainty in complex CFD models. However, when using commercial packages, it is 
not possible to modify the source code, and consequently, mostly non-intrusive methods can be used. 

 The determination of the input and model parameters that have the strongest influence on the output 
results must be estimated previously by well-known, established techniques such as PIRT and sensitivity 
analysis. In the previous example, we have seen that the results are not sensitive to the turbulence model as 
displayed in Figure 10.10. 

 LES simulations have proven to produce accurate results in the description of mixing processes such 
as those in T-junctions. Nonetheless, LES simulations still pose an important computational burden for 
more complex systems. Consequently, turbulence models based on RANS equations constitute a cost-
effective alternative to calculate flow fields in larger systems or problems where a large number of 
parameters needs to be varied.  

 In this document, stochastic-CFD simulations of the turbulent mixing of water in the GEMIX 
facility were accompanied by PCE to quantify the errors introduced by uncertainties in (i) the shape of the 
inlet velocity profiles (uniform versus fully developed), (ii) the level of the turbulence intensities, and (iii) 
the turbulent Schmidt number. The simulations revealed that a better agreement with the experimental 
results can be achieved by the introduction of stochastic variables controlling the shape of the velocity 
profile and turbulence intensity at the inlet ( )βα ,  as well as the turbulent diffusion (stochastic turbulent 
Schmidt number). Further we showed that the choice of the turbulence model has only a mild influence on 
the mixing experiments considered here when compared with the level of uncertainties introduced by the 
inlet boundary conditions or the turbulent Schmidt number. While the former is not directly accessible 
through measurements in the GEMIX facility, researchers have strongly recommended to measure the inlet 
conditions whenever possible to form a complete data set. Both worlds – experimental and simulation – 
will profit from this.  

10.5 Characteristics of the method 

PCE is a propagation method. PCEs are recognised as a meta-model in the sense that the response is 
represented by a linear combination of polynomials. Nonetheless, the selection of the orthogonal 
polynomial basis depends on the PDF of the input random parameters. In contrast to conventional 
propagation methods using meta-models in which the interpolating polynomials have no relation to the 
inputs, the propagation step in PCE does not require the use of Monte Carlo methods applied to the 
interpolated response surface. To obtain the appropriate moments for the output (mean, standard deviation, 
etc.), we make use of the orthogonal property of the polynomials and calculate the statistical moments 
from the polynomial coefficients. This method also allows for a rigorous sensitivity analysis in terms of the 
Sobol’s indices.   

 PCE does not constitute a complete UQ methodology; it is only a propagation method. Being a 
probabilistic propagation method, it can address any type of uncertainty as long as the uncertainty is 
represented by a PDF. Epistemic uncertainties due to incomplete physical models can be treated in a 
Bayesian probability framework, where the PDFs of input parameters are constructed from expert 
judgement and available quantitative information.  

 If we treat all numerical options with a uniform PDF, then in principle, we could include uncertainty 
due to numerics in the analysis.  

 This method can address uncertainty due to geometric simplification depending on how this input 
uncertainty is represented. To assess the level of uncertainty introduced by unresolved scales (geometrical, 
turbulent, etc.), we must have the appropriate data including all the unresolved details. If this information 
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is available, then a PDF could be constructed and propagated through the simulations.  

 We are using PCE applied to CFD, and therefore, scalability is not an issue. Nevertheless, the level 
of uncertainty introduced by uncertain boundary and initial conditions, turbulence closure laws, and 
numerical errors can vary substantially from small to large scales. In fact, the main reason for large 
discrepancies between CFD simulations and experiments is most probably due to numerical errors rather 
than to turbulence closure laws, which are derived using physical arguments at small size and time scales; 
turbulence model coefficients and wall functions do not depend on the system’s size.  

 Neither SET data nor IET data are used in the propagation step. 

 There is no code calibration for data in the propagation phase.  

 The number of reactor calculations depends on the number of input parameters and the degree of the 
polynomials. Selecting second order polynomials and seven random parameters, we need 36 simulations. 
Increasing the polynomial degree to four would require 330 simulations for the same number of 
parameters. Systematic observations show that only low degree polynomials contribute considerably to the 
solution.  

 As mentioned before, PCE is not a complete UQ methodology but only a propagation method, and 
as such, well established and with a high degree of maturity.  
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11.  METHODS FOR NUMERICAL ERROR EVALUATION 

When a discretised solution is sought for a system of equations, numerical error naturally arises due to 
discretisation in space and time. With decreasing mesh size or time step, the error also decreases. The goal 
of solution verification is to estimate the magnitude of the error and provide an interval within which the 
exact solution will be found with a certain level of confidence. These two distinct steps of analysis are 
described below. 

11.1 Error estimation 

Two commonly used methods for the error magnitude estimation are the Richardson extrapolation (RE) 
and the least-squares (LS) method. RE was first introduced in 1910, and the modified RE provides the 
most general solution. RE works well when the solution response is monotonic with respect to mesh size 
but may lead to unexpected results when the response is not monotonic. In such cases, the LS method 
provides an improved solution.  

 In both methods, the convergence of the numerical solution with decreasing mesh size is analysed. 
However, one needs to ensure that the mesh size remains small enough to resolve the physical phenomena 
one attempts to resolve. 

 The values of the analysed numerical solution should be free of iteration errors and boundary effects. 
One needs to ensure that the iteration error is 2 to 3 orders of magnitudes smaller than the discretisation 
error. If that is not the case, the two errors are combined in a conservative manner such that unum = uh + ui, 
where ui is the iteration error, uh the discretisation error, and unum the numerical uncertainty. The analysed 
solution value should also be taken at a location that has minimal boundary effects. 

 If transient effects in the model physics strongly influence the analysed numerical solution, both RE 
and LS methods may have poor convergence because of the physical effects. In such cases, integral 
measures such as the lift coefficient can lead to better convergence in the numerical errors.  

Both the RE and LS methods are described below. 

11.2 The Richardson extrapolation 

Richardson supposed that a numerically discretised solution 𝜑𝜑 could be expressed as a limited 
development in terms of the grid spacing h : 𝜑𝜑 = 𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛼𝛼ℎ𝑝𝑝 + ⋯ . If the algorithm’s order of 
accuracy, denoted as 𝑝𝑝 in the limited development above, is known, then only two unknowns are in this 
development: 𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝛼𝛼. Consequently, the value of 𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 can be determined by using two solutions 
with different grid sizes. If the order of accuracy is not known, a minimum of three solutions with different 
grid sizes is needed. 

 The analysis steps outlined by ASME are as follows: 

1. A representative mesh size is defined. If a 3D mesh is structured and isotropic, a 
characteristic mesh size is determined from [ ] 3/1

maxmaxmax zyxh ∆∆∆=  where the maximum 
mesh size in each Cartesian direction is used. If the mesh is not structured, the characteristic 
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mesh size can be estimated from [ ] 3/1/ NVh TOTAL=  where TOTALV  is the total mesh volume 
and 𝑁𝑁 is the number of cells. 

2. Several significantly different mesh sizes are selected for simulations. Typically, a refinement 
by a factor of two and an enlargement by a factor of two are chosen with respect to the 
reference solution, giving mesh size ranges of [1 2h, h, 2h, 4h⁄ ], but the scaling ratio can be 
different for different grids. Although an integer scaling ratio is desirable, it is not required. 
However, based on empirical experience, ASME (2009) recommends a ratio of r =
hcoarse

hfine�  greater than 1.3. The grid refinement should be performed isotropically in all 

Cartesian directions. 

3. With three different mesh sizes, 1h , 2h , and 3h , and h1 < h2 < h3, one can write the 
following three equations: 

𝜑𝜑1 = 𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛼𝛼ℎ1
𝑝𝑝 + +0�ℎ1

𝑝𝑝+1� 
 

𝜑𝜑2 = 𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛼𝛼ℎ2
𝑝𝑝 + +0�ℎ2

𝑝𝑝+1� 

𝜑𝜑3 = 𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛼𝛼ℎ3
𝑝𝑝 + +0�ℎ3

𝑝𝑝+1� 

 One defines the ratios 𝑟𝑟21 = ℎ2 ℎ1⁄  and 𝑟𝑟32 = ℎ3 ℎ2⁄  . In the simple case where both ratios are 
equal, one easily calculates analytically that 

𝑝𝑝 =
𝑙𝑙𝑙𝑙 �𝜑𝜑3 − 𝜑𝜑2

𝜑𝜑2 − 𝜑𝜑1
�

𝑙𝑙𝑙𝑙 (𝑟𝑟)
 

and   

 𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜑𝜑1 −
𝜑𝜑2−𝜑𝜑1
𝑟𝑟𝑝𝑝−1

 

 ASME (2009) proposes an extrapolation of these formulas for the case where 𝑟𝑟21 and 𝑟𝑟32 are 
different. The differences between the successive solutions iϕ , denoted as 2332 ϕϕε −=  and

1221 ϕϕε −=  and the apparent order of the accuracy, 𝑝𝑝, can be determined from: 

( )2132 / εεsigns = , 









−
−

=
sr
srpq p

p

32

21ln)( , 

[ ][ ] 0)(/ln)ln(/1 213221 =+− pqrp εε . 

 The value 𝑝𝑝 is solved iteratively from an initial guess until the following condition is met for a 
small value of ε  :  
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 However, if the mesh refinement ratio 𝑟𝑟 is constant, then 𝑞𝑞(𝑝𝑝) = 0 , and the solution is 
simplified. This step is omitted if the apparent order of convergence is known.  
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4. Once 𝑝𝑝 is determined, one can calculate the extrapolated value of the solution from 
)1)(( 212121

21 −−= pp
ext rr ϕϕϕ . The normalised relative error is determined using 

1

2121

ϕ
ϕϕ −

=ne  and the estimated extrapolation error from 21
1

21
21

ext

ext
exte

ϕ
ϕϕ −

= . In the ASME 

report, the above methodology is implemented using three solutions with three different mesh 
sizes. An implementation with more than three solutions was not discussed, but one could 
easily imagine repeating RE with all possible 3-element subsets of all solutions. However, the 
result from the subset containing the three finest meshes will likely be the most accurate.  

11.3 Least-squares approach 

When the convergence of the numerical solution with decreasing grid size is monotonic, the LE approach 
as proposed by Eca and Hoekstra (2002) can be used to determine the numerical error. In this approach, a 
minimum of four grid points is needed for solutions whose convergence is evident, but at least six grid 
points may be required to obtain stable results for solutions with poor convergence.  

 We assume that the numerical solution is different from the exact solution by a factor of the grid 
difference 𝜑𝜑𝑖𝑖 − 𝜑𝜑∞ ≅ 𝛼𝛼ℎ𝑖𝑖

𝑝𝑝. The LE approach aims to minimise the difference between the ith numerical 
results 𝜑𝜑𝑖𝑖 and its best-fit of the convergence 𝜑𝜑∞ + 𝛼𝛼ℎ𝑖𝑖

𝑝𝑝. The sum of the total error is  
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p
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 where 𝑛𝑛 is the number of solutions. The minimum solution is found by finding the roots of the three 
equations: partial derivatives of ),,( pS αϕ∞  with respect to ∞ϕ , α , and p = 0. Solving these 3 equations 
leads to  
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 The solution is determined iteratively by a false position method for the value of p .The value of α  

is determined before it is substituted into the equation for ∞ϕ .The value 
p

pS
∂

∂ ∞ ),,( αϕ
 is determined from 

the derived α  and ∞ϕ , and the value of p  is sought iteratively until 
p

pS
∂

∂ ∞ ),,( αϕ
 becomes smaller than 

the target value.  



84 

 If the calculated value of p  is larger than the theoretical value, the theoretical maximum is used 

instead. The value of α  which yields 0),,(
=

∂
∂

∞

∞

ϕ
αϕ pS  is then determined, allowing the value of ∞ϕ  to 

be evaluated. 

11.4 Uncertainty estimation 

The final goal of solution verification is to estimate an uncertainty range, i.e., f ± Uα, such that one has a 
likelihood of α that the exact solution is within this range. The typical value of the likelihood used is α = 
95%, which is comparable to two standard deviations of a standard Gaussian random variable. 

 The ASME report proposed an estimation of the uncertainty range by the grid convergence index 
(GCI) (Roache, 1998). In GCI, the U95% uncertainty range is given by multiplying the numerical error with 
a factor of safety, Fs . This conversion from numerical error to numerical uncertainty is made and verified 
through repeated empirical observations. The value of Fs  depends on the behaviour observed in mesh 
convergence studies. Fs  is larger if only a few mesh sizes are studied or if the convergence behaviour is 
erratic.  

 The GCI based on the solution with the finest mesh is  

121

21
21

−
⋅

= p
n

fine r
eFsGCI  where one recalls that 

1

2121

ϕ
ϕϕ −

=ne . 

 The value of Fs  is determined according to the quality of the available solutions. In general, if the 
grid convergence is smooth and many solutions are available, we use a less-penalising value of 1.25. In 
contrast, if the grid convergence is erratic and few solutions were done, a more penalising value of 3.0 is 
used to increase the magnitude of the estimated numerical standard deviation (Table 11.1). 

 

Table 11.1: Different value of factors of safety for estimation of grid convergence index  

Fs  Conditions Applicable Method 

1.25 at least three grids Richardson extrapolation, without known p 

3.00 two grids  Richardson, with known p 

1.25 at least four grids least-square 

3.00 at least four grids,  least-square, with erratic convergence 

 The estimation of Fs is a controversial topic. Several improvements have been proposed to take into 
account that the estimated order of accuracy is sometimes different from the theoretical one (Xing and 
Stern, 2010). The proposed factors of safety are validated on numerous cases where the exact value of the 
solution is known, either because the considered case has an analytical solution or because an experimental 
value of the solution is available. 

 Once the GCI is calculated, the numerical uncertainty unum can be estimated. GCI is an estimation of 
the 95%-interval of variation of the exact solution while in the ASME VVUQ standard, the numerical 
uncertainty is given by one standard deviation. To reconcile these two values, ASME proposed a 
conversion. When the grid convergence of the solution is erratic, ASME assumes that, at best, the 
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distribution of the numerical error can be centred on the finest solution. If the distribution is Gaussian, the 
conversion from GCI to unum is as follows because GCI is an estimate of two standard deviations:  

unum = GCI/2. 

 If the grid convergence is smooth, the distribution of the numerical error will be centred on the 
extrapolated solution. The estimation of unum, which is centred on the finest solution, will be based on a 
shifted Gaussian hypothesis and, consequently, will use a more penalising conversion of  

unum = GCI/k 

 where k has a value between 1.1 and 1.15. 
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12.  BRIEF DESCRIPTION OF TWO PROCEDURES TESTED IN EDF 

This section presents methods developed and tested at Électricité de France (EDF) 

12.1 Univariate uncertainty quantification 

12.1.1 General presentation 

The purpose of the method named Weighing Approach for Validation against Experiment (WAVE) is to 
produce, for a certain quantity of interest S (S being a scalar output of the CFD calculation performed at 
reactor scale), a value S5/95 that is smaller (or greater, depending on what is penalising) than 95% of the 
possible values of S with a confidence level of 95%. The confidence level comes from the finite number of 
experimental test cases at one’s disposal. This method, as with some other VVUQ approaches, is based on 
a comparison between experimental results and calculation results at the test case scale. It also considers 
propagation of the uncertainty of input data parameters. 

12.1.2 Notation 

S is the scalar quantity of interest; for example, S is a fluid temperature during a PTS transient at a given 
location in space and time. In the following, we assume that S is made non-dimensional in an appropriate 
way so that values at reactor scale and at test case scale can be compared directly. 

 The following definitions are what we use in this work: 

• St is the “true” (unknown) value of S. 

• SCFD is the value of S calculated by the CFD model. 

• “r” represents the true (unknown) conditions at reactor scale 

• “R” represents the best estimate value of “r”. 

 Thus, St(r) is the “true” (unknown) value of S at reactor scale; SCFD(R) is the result of the CFD 
calculation at reactor scale; SCFD(r) is the result a CFD calculation would produce for the “true” reactor 
scale conditions (if these conditions were known). 

 Similarly, “e” represents the “true” (unknown) conditions at test case scale; “E” represents our 
estimation of “e”. Since several experimental tests are used in the method, index “k” is used to differentiate 
these K tests. 

 Thus, St(ek) is the (unknown) true value of S in test number k; SCFD(Ek) is the result of the CFD 
simulation of test number k; SCFD(ek) is the result a CFD calculation would produce for the “true” test 
number k conditions, if these conditions were known. 

 We also introduce the following notations: 

• mk is the “true” value of S in experimental test number k, i.e., mk= St(ek). 

• Mk is the measured value of S in experimental test number k. When measuring mk, the answer 
we get is Mk, because instrumentation has a limited accuracy. 
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12.1.3 Mathematical formulation 

At reactor scale, we write that the “true” value of S can be split as follows: 

 St(r) = (St(r) – SCFD(r)) + (( SCFD(r) - SCFD(R)) + SCFD(R))  (Eq. 12.1) 

 

 On the right-hand side of this equation, the first term represents “how wrong” the CFD model is at 
reactor scale. We note this term “A”. This term is intrinsic to the model: the “true” reactor scale conditions 
“r” appear here, so no uncertainty of these conditions is present in “A”. 

 The second term is the result of the CFD calculation at reactor scale SCFD(R) plus a correction due to 
our imperfect knowledge of the true reactor scale conditions. We note this term “B”. 

 We thus have St(r) = A + B. 

 St is the “true” value of S at reactor scale. We are now going to represent our knowledge of St with a 
random variable based on the splitting above: 

• The random aspect of B simply means that our knowledge of the true conditions at reactor scale 
is imperfect. “R” represents “r” with some uncertainty, and this uncertainty is propagated through 
the CFD model. 

• The random aspect of A is based on the way we estimate this term, which is detailed below. 

 At this point, how can we get some knowledge of term A, that is, of “how wrong” the model is? In 
the method, this knowledge is based on the comparison of model results with experimental results obtained 
at test case scale, the test case being a good representation of the reactor. A hypothesis in this method is the 
“scalability hypothesis” which states that model error at reactor scale is assumed equal to model error for 
the simulation of an experimental test k at test case scale. This hypothesis has to be justified by preliminary 
work with a PIRT and validation experiments. Of course, this result does not come from rigorous 
mathematical proof, but by relying on concrete physics-based reasons, one can expect a reasonable value. 

 With this hypothesis, term A is taken equal to a term Ak (for a given test k), which verifies 

 Ak= St(ek) – SCFD(ek) (Eq. 12.2) 

 Ak= (St(ek) – SCFD(Ek)) + (SCFD(Ek) – SCFD(ek)) (Eq. 12.3) 

 We can introduce the measured value of S in this formula: 

 Ak= (St(ek) – Smeasured(ek)) + (Smeasured(ek) – SCFD(Ek)) + (SCFD(Ek) – SCFD(ek)) (Eq. 12.4) 

 Or we can use the notations introduced above in section 12.1.2: 

 Ak= (mk – Mk) + (Mk – SCFD(Ek)) + (SCFD(Ek) – SCFD(ek)) (Eq. 12.5) 

 On the right-hand side of Eq. (12.5), 

• the first term stands for measurement error, 

• the second represents the difference we obtain between measurement and calculation results at 
test case scale, 

• the third shows the impact our imperfect knowledge of the true conditions at test case scale has 
on the calculation result; this term is similar to the corresponding term at reactor scale, which is 
present in the expression of B. 

 With the “scalability hypothesis”, St can be written as a sum of calculable terms: 

 St,k(r) = Ak + B (Eq. 12.6) 
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St,k(r) = (mk–Mk)+(Mk–SCFD(Ek))+(SCFD(Ek)–SCFD(ek))+((SCFD(r)-SCFD(R))+SCFD(R)) (Eq. 12.7) 

 At this step, the CFD result at reactor scale is considered unique. Yet, different numerical parameters 
can vary between validation and reactor calculation (e.g. mesh, time step, numerical scheme) within the 
range of BPGs and V&V. These different numerical configurations induce variability in the CFD results. 
For practical reasons, we suggest treating this variability at test case scale. A new notation is introduced 
using index “CFD” with the number “1” corresponding to test case scale simulation with numerical 
parameter set number 1, number “2” corresponding to a second set of numerical parameters, and so on. A 
new term appears in Eq. (12.7), which leads to the following equations: 

𝑆𝑆𝑡𝑡,𝑘𝑘(𝑟𝑟) = (𝑚𝑚𝑘𝑘 −𝑀𝑀𝑘𝑘) 

 

             + (𝑀𝑀𝑘𝑘 − 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶1(𝐸𝐸𝑘𝑘)) 

 

             + (𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶1(𝐸𝐸𝑘𝑘)− 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶1(𝑒𝑒𝑘𝑘)) 

 

 

             + (𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶1(𝑒𝑒𝑘𝑘) − 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶2(𝑒𝑒𝑘𝑘)) 

 

 

             + (𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶2(r) − 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶2(R)) 

 

 

             + 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶2(R) 

 

 

 

Figure 12.1: Caption describing the above, well, figure. 

 

Each term is described below: 

• SCFD2(R) is simply a numerical, non-random value, the result of the CFD calculation at reactor 
scale for the scalar quantity S. It is basically the one and only calculation run if one does not take 
care of VVUQ. 

• The correction term (SCFD2(r) - SCFD2(R)) is treated as random; the uncertainty of reactor scale 
conditions is propagated through the model; this term is assumed to follow a normal law centred 
on zero. 

• The term (mk – Mk) is treated as random and represents measurement uncertainty; this term is 
assumed to follow a normal law centred on zero. This is another hypothesis, which assumes that 
measurements are not perfectly accurate, but that they are not biased either, otherwise the mean 
value of (mk–Mk) would not be zero. It is a reasonable assumption when acquisition has been 
calibrated. 

Measurement uncertainty 

Difference between measured and 
calculated value 

Uncertainty of initial and boundary 
condition at the mockup scale 
propagated through the code 

Numerical parameter variability 

Uncertainty on initial and boundary 
condition at the mockup scale 
propagated through the code 

Result of the CFD code at reactor scale 

Ak 

B 



90 

• The term (Mk - SCFD1(Ek)) is just the non-random difference between the measurement and 
calculated values of the scalar S for test number k. 

• The correction term (SCFD1(Ek) – SCFD1(ek)) is treated as random; the uncertainty of test case 
scale conditions is propagated through the model. This term is assumed to follow a normal law 
centred on zero, same as for the similar term at reactor scale above. 

• The term (SCFD1(ek) – SCFD2(ek)) is treated as a random variable and takes into account the 
variability of numerical parameters.  

 Since St is the sum of all the terms above, by assumption it follows a normal law:  

• Centred on 𝐸𝐸𝑘𝑘 = SCFD2(R) + (Mk − SCFD1(Ek)), St is the result of the reactor scale CFD 
calculation, corrected by calculation-measurement difference as seen on test number k.  

• With a standard deviation σk that results from quadratic composition of the standard deviations 
of the Gaussian distributions corresponding respectively to measurement uncertainty, propagated 
uncertainty of reactor scale conditions, propagated uncertainty of test case scale conditions and 
the numerical parameters variability. 

 The S5
k value is the 5th percentile of the distribution of St calculated in this way. Depending on what 

is being penalised, S5
k is smaller or greater,) than 95% of the estimated possible values of St. 

𝑆𝑆𝑘𝑘5 = 𝐸𝐸𝑘𝑘 ± 1,645 ∗ 𝜎𝜎𝑘𝑘 

 The S5
k value is relative to one particular test k. The distribution of the S5

k is considered for a series 
of K tests. We thus define S5/95 (95% confidence) as being the average of S5

k corrected by a factor of S5and 
multiplied by the standard deviation σ5 of the distribution of the K S5

k. This factor – the Student factor 5/95 
– is a function of the total number K of tests k; more precisely, it is a function of a target probability, a 
target confidence level, and a target number of tests. 

𝑆𝑆5/95 = 𝑆𝑆5 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(5,95 ;𝑛𝑛) ∗ 𝜎𝜎5 

12.1.4 Calculation of the various terms 

The different terms are calculated as described below. 

• SCFD2(R) is the result of the CFD calculation at reactor scale. 

• The correction term (SCFD2(r)-SCFD2(R)) is calculated by running several CFD calculations 
with different input conditions; the uncertainty of the input data is thus propagated through the 
model. The method is used with just one additional calculation per uncertain input value (linear 
dependence is assumed), but this could be extended to something more elaborate (higher-order 
dependence) using more calculations. 

• The measurement uncertainty term (mk – Mk) is obtained from the characteristics of the 
instrumentation. 

• The (Mk - SCFD1(Ek)) term is simply the difference between the calculated value and the 
measured value. 

• The correction term (SCFD1(Ek) – SCFD1(ek)) is calculated by running several CFD 
calculations at test case scale with different input conditions, just as the similar “reactor scale” 
term. 

• The (SCFD1(ek) – SCFD2(ek)) term is calculated by running several CFD calculations with 
various numerical parameters. 
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12.1.5 Characteristics of the method 

This method uses extrapolation and propagation, depending on the term computed. 

 It does not use a meta-model. 

 It addresses uncertainty due to IC and BC. 

 It addresses model form uncertainty taking into account a bias between computations and 
measurements.  

 It addresses uncertainty due to numerics (calculations with different meshes). 

 It does not include the effect of geometry simplification specifically, but includes this in the model 
bias. 

 It considers the integral test used to be close enough to the application to transpose the model bias 
from the integral test to the application test. 

 SETs are not used in this method, but IET data are. The number of computations at the IET scale is 
the same as the number of experiments plus the number of numerical and physical parameters that can be 
varied after the validation test. 

 There is no code calibration on data. 

 The number of computations at reactor scale is one computation plus twice the number of uncertain 
parameters.  

 This method has been used in a reactor safety related studies so the maturity is medium. 

12.2 Multivariate uncertainty quantification 

12.2.1 Some elements of feedback from an experience in EDF 

Experience with complex CFD simulations at EDF leads to the following conclusions concerning the 
different sources of uncertainty summed up in section 3. 

1. Initial and boundary conditions: They are tractable. In detail, propagation of uncertainty has a solid 
mathematical framework; CPU cost is not a blocking point with a sufficient number of computer 
cores; and even with a limited number of runs, estimating uncertainty added by use of non-
convergent statistical estimators is possible. 

2. Uncertainties related to the parameters of physical models: These are very difficult to quantify 
because parameters of physical models are strongly linked to each other and because, in the past, 
different experiments gave different values resulting in a set of optimal parameters used today that 
experts advise to keep fixed. 

3. Uncertainties related to the form of physical models: These uncertainties are intractable, especially 
for turbulence models. Indeed, turbulence models are very complex and deal with very local 
phenomena. A modification in the form of the model is out of reach for non-experts in turbulence, 
and the effects would be unpredictable on large-scale phenomena. 

4. Choice among different physical model options: Different physical model options are tractable, but 
generally experimental users know what the best choice is. Currently, no rigorous framework exists 
to use results obtained with a model that is expected to give worse results than choice number one. 

5. Numerical uncertainties: Such uncertainties are difficult to quantify, but to justify any result, 
quantification is necessary. The main problem concerns the fact that there is an implicit link 
between physical models and spatial discretisation. Hence, in many situations, no convergence can 
be observed. 
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6. Choice among different numerical options: Same as point 4. 

7. Simplifications of the geometry: If geometry has been simplified, it was for a reason, and 
removing this simplification generally results in appearance of new problems that undermine 
the effort of quantification of this point. Thus, such simplifications must be retained. 

8. Chaotic behaviour: It prevents from using local sensitivity tools but not global analysis tools. 
It requires having samples of repeated experiments and calculations, and special care is 
required in the analysis to check the convergence of statistical estimators. The ability of CFD 
models (model stands for code + mesh + code configuration) to simulate chaotic flows should 
be quantitatively validated with IETs since it cannot be taken for granted. This is tractable. 

 In the end, the feedback considers that points 1 and 8 are relatively easy to tackle, point 5 is more 
difficult but it is more a matter of result quality than a question of feasibility. Points 2, 3, 4, and 6 seem out 
of reach for now by direct solving, and point 7 seems completely beyond reach in most applications. 

 These conclusions drove the creation of the following procedural steps to perform UQ with complex 
CFD simulations: 

1. Rely on engineer judgement and common sense to make simplifications of the geometry that 
have an acceptable impact on results. 

2. Perform uncertainty propagation on initial and boundary conditions of reactor scale simulations. 
It is smart to give some thought to the simulations to be done (for example, see documentation of 
OpenTURNS4), but whatever the final design of experiment (DOE), the convergence has to be 
checked with a statistical calculation or cross-validation. Use of meta-models did not prove to be 
relevant when model behaviour is not known a priori. 

3. Perform mesh sensitivity analysis (convergence analysis, if possible) on reactor scale simulations 
using appropriate variations of time steps. RE and GCI offer documented frameworks, but 
sometimes the conditions required to use them are difficult to reach (see Eca, year: “Overview of 
the Lisbon Workshop”). 

4. Rely on an integral validation test case (i.e., a test case that is, for a certain physics, fully 
representative of what happens at reactor scale) to have a reasonable quantification of the joint 
effects of points 2, 3, 4, and 6. Obviously, comparisons between measurements and simulation 
results have to be done with “converged” results, and a mesh sensitivity analysis must be done 
for the simulations of the test case. These 4 sources of uncertainties are translated into an error 
that is called “model error” below. 

 Concerning the nature of results produced by UQ analysis, in the industrialised world, the choice is 
generally not in the hands of the engineers responsible for the analysis. For example, if in a code chaining 
framework, the CFD role is to give velocity at a specific point over time, the only results directly usable by 
the rest of the chain of calculations is a set of velocities over time that is considered to respect the 
probability law of “possible” velocities. To give a PDF or worse – an uncertainty band or quantiles – 
would force engineers at the next link in the chain to make unlighted assumptions to rebuild data usable for 
their calculations. 

 The procedure tested in EDF for PTS follows the general guidelines described above. This 
procedure had to be written in computer code because it relies on non-trivial calculations and might imply 
a large amount of data. Actually, it is based on the software OpenTURNS). This code was verified using 
dummy data while trying to respect the formal framework of the Method of Manufactured Universes 
(Stripling, 2010). In EDF, the procedure plus its associated UQ code was called Propagation of 
uncERtainties in Chaotic simulations with ExperImental Validation and bootstrap Evaluation 
                                                      
4. www.openturns.org  

http://www.openturns.org/
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(PERCEIVE). 

The concepts at the origin of this procedure are rather pragmatic and easy to discern/determine. The 
following subsections present the procedure. Many details concerning practical implementation are 
deliberately left out for the sake of brevity. Additionally, aspects of grid convergence are not mentioned; 
one could say that here model results are assumed to be converged. 

12.2.2 The main principle of the procedure 

To get a plausible estimate of the a priori unknown SRQ in the reality of interest, the driving principle of 
PERCEIVE is to use every picture of the reality of interest available. Considering an IET representative of 
the reality of interest, available data are numerical simulations of the IET 𝑦𝑦𝑒𝑒𝑥𝑥𝑝𝑝𝐶𝐶  and trustworthy data on this 
IET (like measurements) 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅 . From these 2 sets of data, a transfer function 𝜑𝜑 can be devised. A third 
picture of reality is obviously the numerical simulations of the reality of interest 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃

𝐶𝐶 . Now, applying 𝜑𝜑 to 
𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶  gives extra information compared to usual propagation of uncertainties; it answers the question 

“What values would the SRQ take if the model exhibits the same flaws at test case and case of interest 
scales?” This principle is pictured in Figure 12.22. 

 

 
Figure 12.2: The main principle of PERCEIVE (𝐲𝐲𝐏𝐏𝐏𝐏𝐏𝐏

𝐑𝐑  is unknown) 

12.2.3 Definition of the transfer function 

Different possibilities arise when considering a suitable transfer function 𝜑𝜑. Traditionally, each calculation 
result is corrected with the tendency to extremes, as observed at test case scale. The average values are 
usually under- or overestimated. 

φ�yPWR
C � = yPWR

C + δ with δ = µexpR − µPWR
C . 

 In order to better deal with issues of IET representativity and to follow PERCEIVE more closely, it 
was decided not to correct using absolute values but rather with relative ones: 

φ�yPWR
C � = yPWR

C 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶 . 

 In the industrial and IET case where PERCEIVE was to be applied, the SRQ exhibited strong 
inherent variability – the results of a flow affected by Rayleigh Taylor instability leading to a chaotic 
behaviour. Also, to correct each calculation result with the tendency, observed at test case scale, to under- 
or overestimate the inherent variability of the SRQ, isolating inherent variability from variability due to 
significant variations of input parameters in the industrial model at industrial scale was necessary. 
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 This separation requires an estimation of the expectancy of yPWR
C  conditional to 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃

𝐶𝐶 , the variable 
model input (physical like ICs and BCs or numerical like mesh size) mathematically, a vector of size 𝑛𝑛𝑋𝑋. It 
can be done by fitting a curve and an LE estimation of the coefficients, for example, with a linear function: 

𝜇𝜇𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶 �𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃

𝐶𝐶 � = �𝑎𝑎𝑗𝑗 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃,𝑗𝑗
𝐶𝐶 + 𝑎𝑎0

𝑛𝑛𝑋𝑋

𝑗𝑗=1

 

𝜇𝜇𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶 �𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃

𝐶𝐶 � = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚� � �𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶 �𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃,𝑖𝑖

𝐶𝐶 � − 𝜇𝜇𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶 �𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃,𝑖𝑖

𝐶𝐶 ��2
𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶

𝑖𝑖=1

� 

Once this term calculated, it becomes possible to correct each model result with the tendency, observed 
at test case scale, to under- or overestimate inherent variability of the results: 

𝜑𝜑�𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶 � = �𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃

𝐶𝐶 − 𝜇𝜇𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶 �

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑀𝑀

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶 + 𝜇𝜇𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑀𝑀

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶 . 

 Applied to IET results, 𝜑𝜑 would transform the probability function of 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶  into a probability 
function with the same mean value and variance as 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅 . Geometrically, 𝜑𝜑 translates and expands the PDF 
of 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶  so that it shares its 2 first statistical moments with 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅 . These translation and expansion ---noun 
missing---- are simply applied to 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃

𝐶𝐶  to calculate a plausible estimate of the probability function of the 
SRQ at industrial scale. 

12.2.4 Step-by-step description of the procedure  

Step-by-step, the procedure can be described as follows: 

• Consider an IET repeated nexp times. 

• Consider the nexp measures of these nexp experiments (here and after, measure is assumed to be 
reality). Possibly, if the experiments have chaotic behaviour, one will get significant dispersion 
under very similar conditions  xexp,i

R , i ∈ [1, nexp]. 

• Make nexp calculations with our model and the nexp sets of measured experimental 
conditionsxexp,i

R . Each calculation corresponds to a particular experimental run. If the physics are 
chaotic, the calculations have to reproduce this behaviour, which leads to a dispersion 
comparable to the measured one. 

• Calculate mean value and standard deviation for both measured and calculated results. 

• Quantify model error with the relative errors: 

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶 ,
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶 . 

• Consider the model at industrial scale case. To justify extrapolation of errors, the industrial and 
test case models have to be similar (homothetic geometries, similar non-dimensional numbers, 
and similar non-dimensional results). 

• Consider uncertain input parameters of the model used at industrial scale, and create a DOE of 
nPWR points accordingly, such as a Latin hypercube sampling. 

• Propagation of uncertainties gives nPWR calculation results having dispersion due to significant 
variations in the inputs and possibly inherent variability of the SRQ (chaos). 
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• Correct each set of results yPWR
C �xPWR,i

C �, i ∈ �1, nPWR
C � with φ. 

• Depending on the subjective confidence in the transposability of results from IET to the reality of 
interest, the use of the corrected propagation results is at the discretion of the engineer in charge. 

 The use of the corrected propagation results cannot be blunt. Consider a situation where the 
corrected calculation results lead to bigger margin factors than the uncorrected ones: A perfectly valid 
decision would be to transfer to the next link in the chain of calculations used for safety demonstration the 
non-corrected results from CFD in order to lead to a conservative evaluation of the possible values of the 
margins. On the other hand, if the corrected calculation results lead to lesser margin factors, a perfectly 
valid decision would be to transfer the corrected results with an arbitrarily enlarged correction to the next 
link in order to lead, again, to a conservative evaluation of the possible values of the margins. At this point, 
the engineer judgement is still mandatory. 
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12.2.5   Conclusions on the procedure 

The corrected propagation results take the following into account: 

• Model flaws observed at IET scale 

• Variability of the SRQ for the reality of interest due to significant uncertainty on input parameter 
values 

• Possible inherent variability of the SRQ due to chaotic behaviour 

• Extra uncertainty on the SRQ due to non-convergence of statistic estimators (by non-parametric 
bootstrapping not presented here) 

 In the presentation, 𝑦𝑦 was implicitly considered to be a scalar, but when dealing with time series, the 
procedure can be repeated at each time step. The same can be done for a function of space at each discrete 
position. This flexibility allows the respect of the rule that the UQ procedure has to provide results that 
actually correspond to normal model outputs and not only some statistical quantities. 

 In the end, a by-product of the procedure is an estimate of the impact of each source of uncertainty 
on calculation results with chaos and uncertain input parameters separated out. 

12.2.6   Characteristics of the procedure 

This procedure uses both extrapolation of errors and propagation methods. 

 Propagation does not belong to the meta-model category, but a meta-model is used for extrapolation 
of errors. 

 It addresses uncertainty due to uncertain input parameters such as ICs and BCs. 

 It addresses model form uncertainty by taking into account biases on mean value and standard 
deviation between computations and reference data on IET. 

 It can address uncertainty due to numerics. Calculations with different meshes are possible; in 
propagation, categorical variables can be used). 

 IET data are used in this procedure. The default choice is to have a number of computations on the 
IET scale equal to the number of experiments. There is no specific requirement for the number of 
experiments, but the number of calculations and amount of reference data at IET scale impacts estimates of 
uncertainty due to non-convergence of statistical estimators. 

 The procedure does not specifically include the effects of geometric simplification, but they might 
be taken into account if in the model biases are the same at IET and industrial scale. 

 It believes that the IET used is close enough to the application to transpose the model biases from it 
to the case of interest. 

 SETs are not used in this procedure. 

 With default choice, the number of computations at reactor scale does not depend on the number of 
uncertain input parameters (e.g. Latin hypercube sampling, Monte Carlo type methods). Again, the number 
of calculations impacts estimates of uncertainty due to non-convergence of statistical estimators. The 
maturity of this procedure is currently low. 
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13.  CRITICAL REVIEW OF SOME CFD UQ INVESTIGATIONS FOUND IN THE 
LITERATURE 

Very few applications of uncertainty methods in CFD were found in the context of nuclear reactor 
thermalhydraulics. However, to give readers an idea of the current activity in this field, the little 
information found in published papers and presentations is summarised here. 

13.1 On the accuracy quantification for CFD  

The work presented by Moretti and D’Auria (2012) is an attempt to address the issue of quantifying the 
accuracy of CFD code results by suitable metrics while taking the multi-dimensional nature of the data into 
account. Nuclear reactor in-vessel flows featuring perturbations of coolant properties at the core inlet (e.g. 
during boron dilution transients and steam generator (SG) overcooling transients) are considered reference 
situations of interest. The authors observe that code-to-experiment comparisons relying on poor 
quantitative analysis, in which only a few averaged or extreme quantities are compared without fully 
exploiting the amount of information embedded in a CFD-grade data set and in CFD calculation results, 
may be inadequate as far as code qualification for NRS is concerned (Moretti and D’Auria, 2012). They 
then propose a method for the quantitative characterisation of both the measured and calculated time and 
space distribution of target quantities such as the coolant temperature and the boron concentration and of 
related discrepancies. The method uses the calculation of over 20 “accuracy quantifiers,” which are scalar 
parameters defined to capture different key/critical aspects of the variable distributions to which they are 
related. The following is a list of some of the parameters Moretti and D’Auria (2012) define as accuracy 
quantifiers: 

• Perturbation appearance 

• Overall maximum perturbation 

• Core-averaged perturbation 

• Accumulated perturbation 

• Perturbation barycentre 

• FLOMIX-type deviations [i.e., similar to those adopted in the framework of the FLOMIX-R 
European Project ] 

• Spatial gradients 

• Application of the 3D Fast Fourier Transform 

 In particular, some scalar parameters can be considered “mixing indicators” because they are 
directly affected by the amount of mixing the perturbed coolant experiences. Some examples of such 
mixing indicators are perturbation transit time through the core inlet; the maximum value of the 
perturbation over time and space; the maximum value of the core-averaged perturbation; the maximum and 
time-averaged values of the standard deviation of the spatial distribution, which is related to the spatial 
gradients of the distribution itself, which are, in turn, influenced by the mixing; and the maximum slope of 
the spatial distribution of the perturbation. 
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 A preliminary assessment of the above approach is performed by applying it to the CFD code 
validation database available at the University of Pisa. Further assessment and improvement of the method 
by extending it to a wider validation database is recommended. Moreover, the definition of acceptance 
criteria for the accuracy quantifiers also needs to be addressed in future development. 

 The proposed method could be integrated into a UMAE-like framework for qualification and 
uncertainty evaluation. 

13.2 An application of a solution verification for CFD 

An article by Tanaka (2012) describes a complete application of so-called “solution verification”, i.e., the 
evaluation of the uncertainty of the code due to numerical error. It consists of the Richardson’s 
extrapolation, then GCI  as defined by Roache and finally, the estimation of the standard deviation 
associated with the numerical error according to the recommendations of the ASME V&V 20-2009. The 
application case is the prediction of structural thermal fatigue caused by high cycle thermal mixing 
phenomena, a very important issue in design and safety of advanced sodium-cooled fast reactors such as 
the Japan sodium-cooled fast reactor (JSFR). The code used is MUGTHES. 

 In the first step, called verification, the method is applied to 5 simple cases of laminar flow and 
structure heat conduction problems. An “exact” value of each response, for example, the points of a 
velocity profile, is obtained by DNS, experiment or theory. An extrapolated value is estimated for each 
response by using RE. The local 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 is derived from the extrapolated value with a safety factor equal to 
1.25. Then an overall 𝐺𝐺𝐺𝐺𝐺𝐺 in the domain is calculated via the Root Mean Square (RMS) function using the 

local 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 for all responses: 𝐺𝐺𝐺𝐺𝐺𝐺 = �1
𝑀𝑀
∑ (𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖)2𝑀𝑀
𝑖𝑖=1 , 𝑀𝑀 being the number of responses. The standard 

deviation coming from the numerical error is defined as 𝜎𝜎𝑐𝑐 = 𝐺𝐺𝐺𝐺𝐺𝐺 1.15⁄ , as recommended by ASME. 
Because exact solutions are known for these simple cases, the author adds an uncertainty factor based on 
the difference between the exact and extrapolated results defined as follows: 

𝜀𝜀𝐶𝐶 = �∑ 1
𝑀𝑀
�(𝜙𝜙𝑖𝑖)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − (𝜙𝜙𝑖𝑖)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�

2𝑀𝑀
𝑖𝑖=1 . Finally the combined standard uncertainty is defined by 

𝜎𝜎𝑆𝑆 = �𝜎𝜎𝐶𝐶2 + 𝜀𝜀𝐶𝐶2. 

 In the last part of the Moretti and D’Auria (2012) article, validation is performed by considering a 
practical fluid structure thermal interaction problem in a T-junction pipe system. This case is at a higher 
scale than the 5 simple ones, and LES is used to model turbulence. Uncertainty bands are estimated for 
velocities as well as fluid and structure temperatures. The experimental results are bounded by the error 
bars deduced from the application of the whole method. 
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13.3 Iaccarino’s vision of UQ  

Iaccarino’s approach to UQ is quite analogous to the ideas already expressed in this document (Iaccarino, 
presentation made at Von Karman Institute). He divides the UQ problem into three steps (Figure 13.1): 

 
Figure 13.1: Schematic of whole UQ process. Items in blue are not discussed in this report 

 

1. Data assimilation: In this step, we must characterise the input uncertainties. That includes determining 
all sources of uncertainties, their nature (e.g. aleatoric and epistemic), and how they can be represented. 
This characterisation is essential for selecting the propagation method. No explicit method for determining 
the sources of uncertainties is mentioned, but the sources of uncertainty in CFD are well established. They 
include numerical errors (mesh resolution, advection schemes, solution of the linear systems, coupling 
algorithms, etc.), uncertain initial and boundary conditions (including variability of system geometry due 
to fabrication tolerance), uncertain physical properties (which are measured experimentally), and epistemic 
uncertainties in the turbulence models. After all sources of uncertainties have been determined, we must 
gather and analyse the available information about the input parameters in order to define how their 
uncertainties will be represented (e.g. interval, PDF, fuzzy). The main difficulties in data assimilation are 
uncovering and evaluating correlations of input parameters and building credible distributions based on 
sparse and/or contradictory evidence. 

2. Propagation: After the sources of uncertainties have been identified and characterised, we can 
propagate them through the simulations. The selection of the propagation method depends on the nature of 
the uncertainty in the input parameters. For instance, when inputs are represented in terms of an interval, 
the propagation method can be probabilistic or non-probabilistic. For the non-probabilistic interpretation of 
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the input parameter, the interval represents the portion of the parameter-space in which the variable can 
exist. In this case, the input parameter is not considered random but as a deterministic variable without 
certainty of its value in the support interval. Iaccarino points out that this non-probabilistic interpretation of 
the input parameters is different than that of using a uniform PDF where all values are equally probable. 
For a non-probabilistic interval interpretation of the input parameter, the propagation method focusses on 
evaluating the response of the system at the extremes of each input interval. Thus, if we are interested in 
the output interval for temperature at a given location, we should evaluate the CFD simulations at the 
maximum and minimum values of each input parameter and then take the global maximum and minimum 
of the temperature measurements at that location. In Iaccarino’s vision, this type of analysis is equivalent 
to considering the worst case scenario. The problem with this approach is that to properly bound the 
response using the minimum and maximum of the random inputs, it must be monotonic in the multi-
dimensional support interval, a condition that cannot be guaranteed a priori. This is illustrated in Figure 

13.2, where the response of the system in the interval [ ]ba xx ,  is not monotonic. The danger of estimating 

the interval for the response [ ]ba RR ,  when the maximum value for the response cannot be obtained by 
evaluating the response at the extremes of the support interval for the input parameter can be clearly 
observed. When the input random variables are represented by a PDF (e.g. Gaussian or uniform), the 
propagation step can be performed with conventional methods such as Monte Carlo, PCE, or response 
surface + Monte Carlo. 

 

 
Figure 13.2: Schematic of the uncertainty propagation in a non-liner system 

 

3. Certification: In this step, the uncertainty bands are determined, including the acceptance criteria for 
the simulations. For probabilistic propagation methods, uncertainty bands are usually expressed in terms of 
an expected value and a multiple of the standard deviation ( )σnx ± . 

 As mentioned in step 1, the characterisation of uncertainties is vital for selecting the propagation 
method. The three primary ways to characterise the input uncertainties are by using intervals, PDFs, and 
membership function (fuzzy numbers). These three methods of characterizing uncertainty are 
schematically depicted in Figure 13.3. The output uncertainty would then be a combination of these three 
types of individual uncertainties. 

 Input uncertainties can be classified into two main groups: aleatory (stochastic) and epistemic. 
Iaccarino (year) mentions that epistemic uncertainties are NOT naturally treated in a probability 
framework. 
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Figure 13.3: Schematic representation of input uncertainty 

13.4 Methods for epistemic uncertainties 

• Second order probabilities: PDFs are not certain (see Figure 13.4). No details are provided on 
how to propagate these uncertain PDFs. 

 
Figure 13.4: A probability density function for uncertain input  

• Intervals: Input uncertainties are characterised by an interval [ ]maxmin , xx . The output uncertainty 
interval is obtained by taking the global maximum and the global minimum of the response 
evaluated at the extremes of each input interval. For only one input parameter, this is equivalent 
to ( ) ( ){ } ( ) ( ){ }[ ]maxminmaxmin ,max,,min xRxRxRxR . Another way to treat intervals is to use 
Taylor models, where the response is expressed in term of a polynomial of degree n + an interval 
remainder nI , that is nn IPR += . 

• Evidence theory: Basically this method is expert judgement, where the concept of belief is 
introduced. From a personal point of view, I think that in this case we can use a Bayesian 
approach to construct a PDF for the input random parameters based on expert judgement and 
quantitative information available. In a Bayesian probability framework, a PDF represents the 
degree of belief in a certain proposition. Once there is a PDF, either frequentist or Bayesian, any 
standard probabilistic propagation method can be used. This simplifies the calculation of 
response uncertainty, but it could lead to a large increase in the computational cost. For instance, 
having two inputs—one characterised by an interval and the other by a PDF—, we would need to 
sample the response only twice for the first one and several times for the second one. 
Nonetheless, the use of intervals should be restricted to systems that are clearly monotonic. For 
CFD simulations, monotonic behaviour of the responses cannot be guaranteed a priori for the 
input parameters. The use of intervals in UQ for CFD could substantially decrease the 
computational cost but at the expense of having less reliable output uncertainties. In addition, 
intervals cannot be used in a formal sensibility analysis such as Sobol’s indices. 
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In summary, Iaccarino’s general approach to UQ (data assimilation, propagation, certification) is similar to 
what we have already presented in this document. The data assimilation step is the most relevant one in the 
whole UQ methodology. Although the propagation step can be very computationally demanding, without a 
the proper characterisation of the inputs, the output uncertainties become less reliable. Hence, we must 
make an effort to establish a comprehensive methodology for determining the input uncertainties. The 
mathematical details of the propagation methods are straightforward and can be found elsewhere. 

13.5 An uncertainty analysis of coupled system-CFD codes 

Geffray et al.’s 2015 paper describes an uncertainty and sensitivity analysis which was performed for a 
coupled ATHLET-ANSYS-CFX simulation of a TALL-3D experiment. The TALL-3D thermal-hydraulic 
loop is an integral, well instrumented, 7 m tall, lead-bismuth eutectic (LBE) experimental facility, operated 
by the Royal Institute of Technology in Sweden (KTH). It is equipped with a 3D test section. In the 
experiment T01, the main circulation pump is stopped, simulating the trip of a primary pump while both 
heaters remain on. This leads to a transition from forced circulation steady-state to natural circulation 
steady-state with local 3D phenomena like LBE mixing, stratification, and flow reversal in the 3D test 
section leg.  

 In the context of the European project Thermal Hydraulics of Innovative Nuclear Systems (THINS) , 
the German Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS) has extended the capability of 
the coupling between the CFD code ANSYS-CFX and the in-house system analysis code ATHLET to 
model LBE flows. In the simulation of the TALL-3D experiment T01, the test section pool with its inlet 
and outlet pipes were modelled using ANSYS-CFX, while the rest of the facility is represented with 
ATHLET.  

 At the Technische Universität München (TUM, Germany), a computational framework was 
developed to propagate modelling uncertainty through the coupled ATHLET-ANSYS CFD codes. This 
method was applied to the coupled simulation performed for the TALL-3D experiments. All parameters 
used to model the complex TALL-3D experiment, including initial and boundary conditions as well as 
physical models, were considered sources of uncertainty. Using a MatLab code developed in the context of 
the project, a sensitivity analysis determined the most influential input uncertain parameters and an 
uncertainty analysis the range of variability of output variables due to the uncertainty of input parameters 
Two-sided 95%/95% tolerance limits were calculated according to Hofer (1999). This approach has a low 
computational cost with only 93 runs in the present case and is non-parametric, so no assumptions need to 
be made regarding the underlying PDF of the output.  

 The uncertainty and sensitivity analyses show good agreement between the model and the 
experimental results, even though the modelling of the physical phenomena is challenging. The results of 
the sensitivity analysis allow further characterisation of the model behaviour and identification of the most 
influential model input parameters. The results reported here are highly consistent. Parameters such as the 
power of the heaters and pressure losses at the electric permanent magnet-pump need be determined more 
accurately so that the related uncertainty can be reduced thus, allowing an increase in the model prediction 
accuracy.  
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14.  SYNTHESIS OF THE REVIEW  

The various methods covered in this review and their characteristics are synthesised in Table 14.1.  

 The methods described vary in their purposes and other aspects. Some are propagation methods; 
others are extrapolation methods; still other could be combinations of both. In principle, they may address 
all sources of uncertainties but in different ways depending on the method. 

 Some propagation methods use meta-models in view of limiting the number of simulations. Due to 
CPU cost, the total number of required CFD simulations may be an important criterion in the choice of a 
method. 

 An evaluation of the degree of maturity of the methods can also be helpful. Four levels of maturity 
are considered: 

• High: The methodology is well established; it has already been applied to simple test cases and to 
reactor issues. The results were satisfactory. 

• Medium: The methodology is established but may be improved; it was applied to simple test 
cases and to reactor issues. The results are promising but not fully satisfactory. 

• Low: The methodology is established but needs improvement; it was applied to simple test cases 
only. 

• Very Low: The methodology is established but requires further elaboration; it has not yet been 
applied even to simple test cases. 
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Propagation 
methods 

Monte Carlo 
random 

sampling 
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use Many No  100 or 
more Low 

Use of meta-
models PCE Only a few of them: N Can 

use Many No  
!!
)!(
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Low; 

High for 
propagation 

Deterministic 
sampling DS Only a few of them Can 

use Many No   Low 

Extrapolation 
methods 

Extended 
UMAE  

Not 

fully 
All of them are collectively accounted for, though 

not explicitly and individually addressed. 
Must 
use Many Must 

use Many 1 Very low 

Based on 
ASME  

In principle, may address all. 

May depend on how ASME method is extended. 
No  Must 

use 
1 or a 
few 1 Very low 

Combined 
propagation & 
extrapolation 

method 

Use of meta- 
models or not  

A few by propagation; 

others by extrapolation 
Can 
use Many Must 

use A few Several Low 

Table 14.1: Characteristics of the various methods covered in this review
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In the course of this review, the following observations were made: 

• Propagation methods may take all input uncertainties – except those due to non-modelled physical 
processes – but require many reactor calculations when using a Monte Carlo approach. 

• DS may optimise the number of calculations necessary. 

• When using a meta-model, propagation methods require fewer reactor calculations but may not address 
all sources of uncertainties. 

• Extrapolation methods require significantly fewer reactor calculations but need preliminary SET and/or 
IET calculations. To some extent, they may take the uncertainty due to non-modelled processes into 
account. They do not rigorously address uncertainty due to reactor initial and boundary conditions (IC-
BC) or material properties since they can only extrapolate those of IETs, which are better known than 
those for reactors. 

• When using IET calculations, extrapolation methods have a better chance of including the effects of 
non-modelled phenomena than do propagation methods. 

• A combination of extrapolation and propagation seems possible using meta-models. It might address 
some sources of uncertainty created by propagation while some other uncertainties are added a 
posteriori by extrapolation from IET validation.  

• The degree of maturity of these methods is either low or very low. 
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15.  CONCLUSIONS AND RECOMMENDATIONS 

The use of single-phase CFD for reactor safety requires rigorous adherence to a general methodology that 
includes a PIRT analysis, a scaling analysis, the scaling of some experiments, the selection of an appropriate 
CFD tool and of appropriate physical and numerical options, the building of an appropriate nodalisation, the 
application of existing BPG in the previous two steps, a comprehensive V&V programme for the situation of 
interest, and the application of a mature UQ method. Previous activities within WGAMA have elaborated BPGs 
and identified assessment matrices for selected safety issues, but the lack of a consolidated uncertainty method is 
the main limitation for CFD application to safety demonstration.  

 A review of existing work in this field was made, but only very limited information was found regarding 
CFD UQ applied to nuclear reactor safety analysis. The main reactor issues for which CFD UQ methods are 
expected to be applicable in the short and medium term are mixing problems (temperature, boron concentration, 
H2 concentration, etc.) with or without density effects.  

 The two types of methods developed and used for UQ of system codes may be extended to CFD with some 
adaptations, specifically:  

• The methods based on the propagation of input parameter uncertainty 

• The methods based on the extrapolation of accuracy 

 The adaptation of the methods is still in progress, and from the first few applications, the feedback is rather 
limited. In spite of that, here are some preliminary observations and conclusions. 

• The various sources of code prediction uncertainty include initial and boundary conditions, physical 
properties, parameters of the physical models, non-modelled physical processes, numerical models, 
numerical solution errors, simplifications of geometry, possible chaotic behaviour, and extrapolation 
beyond the validated domain. 

• The propagation method with Monte Carlo sampling is applicable to CFD even with a large number of 
input uncertain parameters, but it may lead to prohibitive CPU cost.  

• The use of DS rather than random sampling may be a cheaper alternative for propagation methods 

• The use of meta-models may be a somewhat cheaper alternative for propagation methods when the 
number of input uncertain parameters is low. When used at first order, it is close to the DS method in 
terms of the required number of calculations. 

• The determination of uncertainty due to physical models is not straightforward for propagation 
methods. For example, uncertainty on parameters of turbulence models may depend strongly on the 
type of flow configuration. 

• Extrapolation methods have the advantage of taking benefit from IETs, which are often designed to 
study the safety issue of interest. They require less CPU cost than Monte Carlo propagation methods. 
However, preliminary work on the calculation of many SETs and IETs is necessary. Moreover, it has 
yet to be proved that a pure extrapolation method like UMAE can be adapted or extended to CFD. 

• The uncertainty due to numerics compared to other sources of uncertainty is relatively more important 
than for system codes and requires special attention. Methods for numerical error evaluation exist, but 
they may fail or be difficult to use in practical applications. 
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• The validation of the CFD tool on scaled IETs relative to a situation of interest seems to be mandatory 
in the V&V process and in both V&V and UQ steps.  

• A combination of propagation and extrapolation techniques may be a reasonable compromise in order 
to limit the number of calculations and the CPU cost. 

• The CPU cost is still the main hindrance to CFD application, but the continuing improvements in 
computer efficiency are progressively eroding this obstacle. 

 The maturity levels of all the reviewed methods are medium to very low. Some methods need extensions 
or adaptations for CFD as well as extensive testing, and all need to be benchmarked. Benchmarking is necessary. 
Consequently, the main recommendations are as follows: 

• An effort should be devoted to determine uncertainty due to physical models for propagation methods. 
Methods should be tested following what has been done in the PREMIUM (www.oecd-nea.org) 
benchmark for system codes. 

• Further R&D work on numerical error estimation is recommended.  

• A first benchmark needs to be done and should be based on simple tests and require minimum CPU 
costs in order to test all types of methods including the propagation methods with statistical sampling. 
It should be as close as possible to the mixing with density effects encountered in some reactor safety 
issues. The GEMIX benchmark meets the requirements. 

• A second benchmark should be closer to real application and should use one of the CETs (or 
demonstration) designed to investigate reactor issues.  

 Although the CFD UQ is still immature, application of some existing methods – if properly extended and 
tested – seems achievable.  

 The application of single-phase CFD in a first step for safety demonstration does not create 
insurmountable difficulties, and in the short or medium term, this new technology could reach a degree of 
maturity comparable to that of system codes, at least for a few applications. The application of BPGs, 
comprehensive assessments relative to the specific applications, and a consolidated UQ method are the main 
requirements. A high priority should be put on progress on the last item.  
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17.  NOMENCLATURE 

Accuracy (qualitative and quantitative) 

The accuracy of a simulation is a measure of the differences between the code predictions and the actual transient 
performance of a real facility or reactor. Qualitative accuracy is a non-numerical characterisation of the extent to 
which the code results reproduce the general trends, patterns, and phenomenological features that analysts, 
through their expert judgement, recognise in the experimental data. It is often defined by expressions like “fairly 
good agreement” and “unacceptable error”. Quantitative accuracy is defined by appropriate metrics that measure 
the discrepancies between code results and experimental data, such as mean error, bias, and standard deviation. 
Acceptance criteria may be defined to decide whether the achieved (accuracy – qualitative or quantitative – is 
satisfactory for the intended purpose. 

Bias of calculation result  

A bias is a measure of a systematic difference between an actual or true value and a predicted or measured value. 
Bias is the tendency of a model to systematically over-predict or under-predict data that are representative of an 
assigned phenomenon. 

Code assessment  

Code assessment is the process of verification and validation (V&V) that proves the capability of the physical 
models and of the numerical scheme of a code to simulate with sufficient accuracy and confidence the physical 
behaviours in a given domain of application. 

Code qualification  

Code qualification is the set of procedures used to prove that a code is able to do what it is designed for and that 
it meets all the associated requirements. Code qualification includes QA, V&V, and full documentation. 

Confidence level 

In the general context of confidence intervals probability  that         
sample will contain the true parameter value. 

In the context of statistical tolerance limits: probability β that the limits to be computed will cover the specified 
proportion α of the population (probability content α).  

The confidence level is specified to account for a possible sampling error due to limited sample size, e.g. a 
limited number of calculations, from which the statements are obtained. 

Confidence in validation  

In statistics, “the confidence level” refers to the likelihood that the true parameter value lies within the range 
specified by the confidence interval. The confidence level is usually expressed as a percentage. Thus a 95% 
confidence level implies that the probability that the true parameter value lies within the confidence interval is 
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0.95. Here the confidence level implies the probability 0.95. In the area of V&V for system thermal-hydraulic 
codes, the confidence in validation indicates the level of satisfaction, on the results of the validation process by 
an observer. Therefore, the confidence in validation should be based on the quantitative evaluation of accuracy 
where proper acceptance criteria for the calculations (i.e., comparison between measured and predicted values) 
are fixed and met.  

Closure relations 

After averaging local instantaneous fluid balance equations, many terms in the resulting equations are new 
unknowns or contain new unknowns. At this point, the number of unknowns is greater than the number of 
equations, and the system of equations is not closed. In particular, averaged equations exhibit terms for transfers 
of mass, momentum, and energy at the walls and at the interfaces in two-phase or multi-fluid flow conditions. 
Constitutive relations are mathematical expressions for these phase-transfer terms as functions of the selected 
averaged principal variables. These are part of closure relations. Other relations are also necessary to express the 
average of nonlinear terms as functions of averaged main variables. The terminology “closure relations” derives 
from considering that they are necessary in order to close the system of equations. Some closure relations are 
simplifying assumptions such as <ρ(P,T)> = ρ(<P>, <T>). The closure relations typically encountered in the 
CFD are 

• equations of state, i.e., relationships between averaged thermodynamic state quantities, e.g.  = 
(p,T); 

• relations that express the average of nonlinear terms as functions of averaged main variables such as 
those required in RANS and LES contexts to deal with the terms arising from time averaging and space 
filtering of the advection term of the Navier-Stokes equations, and 

• constitutive relations needed to express, by ad hoc models, the transfers of mass, momentum, and 
energy at the walls and at the interfaces in two-phase or multi-fluid flow conditions or due to 
turbulence that arises from the averaging of local instantaneous fluid balance equations. 

Combined effect test (CET) 

A combined effect test (CET) is an experimental test performed in a test facility intended to simulate the 
behaviour of a complex system with multiple effects combined as in a reactor. Interactions could occur between 
various flows and heat transfer processes occurring in various system components such as an IET. The difference 
between a CET and an IET is that a CET does not necessarily include the whole cooling circuit. However, CET 
and IET terms are both used for some test facilities such as ROCOM. 

Constitutive equations (see also closure relations) 

Averaged fluid balance equations exhibit terms for transfers of mass, momentum, and energy at the walls and at 
the interfaces. Constitutive relations are expressions for these transfers as functions of principal variables. These 
are a subset of closure relations since they are necessary to close the system of equations. 

Computational fluid dynamics (CFD) 

The term “computational fluid dynamics” is very commonly used but is not well defined. Usually it refers to 
simulation tools that solve 3D fluid dynamics equations. This includes the RANS and LES approaches as well as 
the DNS, although practically inapplicable to cases of interest. It is not clear if CFD includes both porous 
medium approaches and open medium approaches, or just the latter. Therefore, it is recommended to specify 
porous-CFD and keep CFD for open medium approaches. Additionally, it is not clear if the term encompasses 
only single-phase and multi-phase CFD. The term computational multi-fluid dynamics (CMFD) was introduced 
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by Yadigaroglu to avoid confusion. The term CMFD is known in the nuclear thermal-hydraulic community but 
not in other domains. 

Demonstration test 

A demonstration test is a calculation test belonging to the verification of a code. Such a test is intended to assess 
whether the code is able to simulate at least qualitatively, without failure the behaviour of a complex system with 
all interactions between various flows and heat transfers processes occurring in various system components.  

Direct numerical simulation (DNS) 

Direct numerical simulation is a sort of “pure” CFD, in which the Navier-Stokes equations are numerically 
solved without applying any prior averaging or filtering techniques to treat the turbulence fluctuations. Hence, if 
the time and space discretisation is “sufficiently fine” (i.e., below the Kolmogorov scales), then the turbulence 
fluctuations can be resolved over their entire spectrum (i.e., at all space and time scales). Such discretisation 
requirements, even for relatively simple problems, usually lead to prohibitive computational costs. 

Integral effect test (IET) 

An integral effect test (IET) is an experimental test performed in an integral test facility (ITF) and is intended to 
simulate the behaviour of a complex system with all interactions between various flows and heat transfers 
processes occurring in various system components. An IET relative to reactor-accident thermal hydraulics may 
include the whole cooling circuit and simulates the accidental scenario through initial and boundary conditions. 

 Separate effect test or single effect test (SET) 

Separate effect tests (SETs) are experimental tests intended to investigate a single physical process, either in the 
absence of other processes and/or in conditions which allow the effects of the process of interest to be measured. 
A SET may be used to validate a constitutive relation independently from the others. 

Integral test facility (ITF) 

An integral test facility (ITF) consists of an experimental loop designed according to a proper set of scaling laws 
and intended to simulate an entire nuclear power plant. It includes all the main components and geometrical 
zones of a nuclear power plant. Phenomena measured in an ITF are expected to be as similar as possible to those 
expected in the reference plant. The design of an ITF is usually based on a reference plant that has already been 
built or designed. 

Large Eddy simulation (LES) 

A large eddy simulation is space-filtered Navier-Stokes equations applied to a turbulent viscosity model in CFD 
tools. 

Mesh (or meshing) 

A mesh (or grid) is the ensemble of fundamental 3D polyhedral cells (tetrahedral, pyramids, hexahedra, and so 
forth) – along with the vertices, or nodes, and faces that define them – into which the computational domain of a 
CFD simulation is divided to allow the solution of the discretised balance equations. If a finite-volume solution 
method is used, as it is in most CFD codes, then the mesh defines the “control volumes” over which the 
equations are integrated. Depending on the specific code implementation, the control volumes either coincide 
with the above mentioned cells or they are polyhedral built around each node.  
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Mesh convergence  

Mesh convergence is the process in which the mesh size of a nodalisation is decreased to the point at which the 
solution does not change anymore. When the numerical scheme is consistent and convergent, convergence is 
obtained when the exact solution of the PDE is reached. In practice, convergence tests are made with a given 
tolerance limit by defining convergence criteria.  

Nodalisation (mesh generation or space discretisation) 

The nodalisation of a thermal-hydraulic system for a CFD code is the schematisation of the system so that the 
system can be reduced to a finite number of nodes or meshes, to which the governing equations are applied and 
solved. In practice, nodalisation consists of defining a possibly simplified geometry of the system and then 
defining nodes or meshes for modelling fluid flow and heat conduction in solids. Nodalisation is the interface 
between the code and the reality as constituted by the NPP or a test facility. The selection of the computational 
domain obviously precedes the mesh generation and can involve geometric simplifications with respect to the 
system to be simulated. It may include both fluid and solid domains with only heat conduction being solved in 
the latter. The requirements for nodalisation, also called mesh generation or space discretisation, include several 
aspects and this process must then take into account the real system characteristics (e.g. the NPP and boundary 
conditions), the code’s numerical features, the objective of the analysis, the required accuracy of the calculation, 
and the available computational resources. 

Numerical consistency 

Numerical consistency is the extent to which the discretised equations approximate the PDEs. A discretised 
representation of a PDE is said to be consistent if we can show that the difference between the exact solution of a 
PDE and of its discretised representation (i.e., truncation error) vanishes as the mesh size approaches zero. 

Numerical convergence 

The numerical feature that the solution to a discretised equation by a numerical scheme approaches the true 
solution to the PDE having the same initial and boundary conditions as the mesh is refined. A consistent, stable 
scheme is convergent. 

Numerical diffusion 

Numerical diffusion is the non-physical enhancement of the diffusivity of momentum, heat, or any transported 
quantity that appears (in the form of “smeared” gradients of variables) due to numerical approximation of the 
advection term in a discretised balance (convective-diffusive) equation. Such an advection term must be 
approximated by a “differencing scheme”, which introduces a numerical error that is reduced as the 
approximation order is increased. First-order schemes, such as the basic “upwind” scheme, are known to yield far 
larger errors than higher-order ones, and it is thus recommended to avoid using them. Moreover, error decreases 
as the spatial discretisation is refined and as the streamlines align with the grid lines. Numerical diffusion is also 
referred to as artificial diffusion, false diffusion, numerical dissipation, and numerical viscosity, among others. 

Numerical stability 

Numerical stability is the numerical feature that prohibits errors from any source to grow through the sequence of 
numerical procedures as the calculation proceeds from one marching step to the next. In the strict sense, this is 
only applicable to transient problems. 
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Open medium (media) approach 

The open medium (media) approach in CFD is applied when local instantaneous equations are either not 
averaged (DNS) or simply time-averaged or ensemble-averaged (RANS; Reynolds-Averaged Navier-Stokes 
equations), or space averaged (or filtered) over a space scale much smaller than the dimensions of the fluid 
domain to be simulated. Thermal-fluid-dynamic are written only in the fluid domain and solid walls may exist 
only at the boundaries of the simulation domain; ; in the case of a “conjugate heat transfer” simulation, the heat 
conduction equation may be solved in solid domains adjacent to the fluid domain. The space resolution of the 
fluid flow simulation is much finer than the hydraulic diameter or the dimensions of the flow domain. 

Phenomena identification and ranking table (PIRT) 

Phenomena identification is the process of analysing and subdividing a complex system thermal-hydraulic 
scenario that depends upon a large number of thermal-hydraulic quantities into several simpler processes or 
phenomena that depend primarily upon a limited number of thermal-hydraulic quantities. Usually, a parameter of 
interest in the thermal-hydraulic scenario, which may be a safety criterion (e.g. a peak clad temperature, a 
reactivity insertion, a thermal or mechanical load), has been identified. Ranking means the process of 
establishing a hierarchy among identified processes with regard to their influence on the parameter of interest. 

Porous medium (media) approach 

A porous medium (media) approach is applied when 3D thermal-fluid-dynamic equations are written in a space 
domain containing both fluid and solid structures. Equations are then multiplied by the fluid indicator function to 
result in fluid equations that include a porosity factor representing the ratio of fluid volume to total volume, and 
transfers with walls are modelled via source terms at every calculation node or in every mesh. The space 
resolution of the fluid flow simulation is at least equal to, or larger than, the hydraulic diameter.  

Reynolds-Average Navier-Stokes (RANS) Equations 

Reynolds-Average Navier-Stokes equations are time or ensemble averaged equations that require turbulence 
models for Reynolds stresses, for turbulent energy transfer, and for turbulent mass transfer.  

Scaling (and scaling issue) 

The word scaling can be used in a number of contexts; two of these are used in this review. (1) Scaling of an 
experiment is the process of demonstrating how and to what extent the simulation of a physical process (e.g. a 
reactor transient) at a reduced scale or at different values of some flow parameters such as pressure and fluid 
properties in an experiment can sufficiently represent the real process. (2) Scaling applied to numerical 
simulation tools is the process of demonstrating how and to what extent the numerical simulation tool validated 
on one or several reduced-scale experiments or at different values of some flow parameters such as pressure and 
fluid properties can be applied to the real process with sufficient confidence. Furthermore, the words ‘scaling 
issue’ should be used when performing a licensing study, and they mainly refer to the scaling capabilities of 
codes. 

Sensitivity/sensitivity analysis  

Sensitivity, or sensitivity analysis, is a quantitative examination of how much the behaviour of a system varies 
with the changes of related parameters, usually in the values of the governing parameters. Systematic variation in 
code input variables or modelling parameters is needed in order to determine the influence of physical 
phenomena and/or of code input variables on the overall analysis results In this report, sensitivity analysis is 
defined by varying one input parameter at a time, thus sensitivity is the effect on the overall analysis results of 
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the variation of this input parameter. Other, more sophisticated statistical measures are available, such as 
Pearson’s correlation coefficients or standardised regression coefficients. These more sophisticated techniques 
vary all the input parameters simultaneously. However, a sensitivity analysis has nothing to do with an 
uncertainty analysis: Sensitivity analysis does not evaluate the weaknesses of the code or the nodalisation nor 
does it assess the sources of uncertainty for an assigned calculation. 

SET: separate effect tests 

Separate Effect Tests are experimental tests which intend to investigate a single physical process either in the 
absence of other processes and/or in conditions which allow to measure the effects of the process of interest. SET 
may be used to validate a constitutive relation independently from the others. 

Space discretisation (see nodalisation) 

Uncertainty (see also uncertainty analysis) 

Uncertainty is a measure of the expected error range in experimental data or in values calculated by a code. 
Ideally, it is defined by a probability density function (PDF) of the considered output parameter of interest. More 
often than not, it is simply expressed by two percentiles (for example, the 2.5th and 97.5th percentiles) of the 
output parameter, from which a variation interval is deduced. The uncertainty can also be described by bias and 
standard deviation. 

Uncertainty analysis (see also uncertainty) 

Uncertainty analysis is an analysis to estimate the uncertainties, or expected error range, of the quantities 
involved in and the results from the solution of a problem. If the method applied is based on propagation of the 
uncertainties of input parameters, uncertainty analysis must include estimation of individual modelling or overall 
code uncertainties, representation uncertainties, numerical inadequacies, user effects, computer/compiler effects, 
and plant data uncertainties for the analysis of an individual event. 

Validation 

Validation of a code is a process to assess the accuracy of the physical models of the code based on comparisons 
between computational simulations and experimental data. In a broad sense, validation is performed to provide 
confidence in the ability of a code to predict the values of the safety parameter or parameters of interest. It may 
also quantify the accuracy. The results of a validation may be used to determine the uncertainty of some 
constitutive laws of the code. They may also be used to systematically collect information on the accuracy in the 
framework of uncertainty quantification methods based on accuracy extrapolation. Validation can be conducted 
by the code developers and/or by the code users. The former is called developmental assessment, and the latter is 
called an independent assessment. 
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Validation matrix (code, user, specific system, and application) 

A validation matrix is a set of experimental data selected for the purpose of extensive and systematic validation 
of a code. The validation matrix usually includes (i) basic tests, (ii) SETs, (iii) IETs, and (iv) nuclear power plant 
data. Various validation matrices can be established by code developers and/or code users for their own, specific 
purposes.  

Verification 

Verification is a process to assess software correctness and the numerical accuracy of the solution to a given 
physical model defined by a set of equations. In a broad sense, verification is performed to demonstrate that (a) 
the design of the code’s numerical algorithms conforms to the requirements, (b) the source code conforms to 
programming and language standards, and (c) its logic is consistent with the design specifications. Verification is 
usually conducted by the code developers; sometimes independent verification is performed by code users.  

A distinction should be made between code verification and solution verification. The former pertains to code 
implementation (the developer’s responsibility), while the latter refers to the checks that the user must perform 
and the actions they must take to ensure the correct and consistent setup of a simulation, e.g. numerical error 
minimisation strategies, review of available documentation and control. 

  



NEA/CSNI/R(2016)4 

 120 

 

  



 NEA/CSNI/R(2016)4 

 121 

 

18.  LIST OF ABBREVIATIONS AND ACRONYMS  

Many terms are defined in section 17, Nomenclature, while others are defined in the text. Here is a list of some 
especially useful abbreviations and acronyms used in this report. 

 

ABWR Advanced boiling water reactor 

ASME American Society of Mechanical Engineers 

BC Boundary conditions 

BPG Best practice guidelines 

BWR Boiling water reactor 

CEA Commissariat à l’énergie atomique (French atomic energy commission) 

CFD Computational fluid dynamics 

CIAU Code with internal assessment of accuracy 

CPU Central processing unit 

CSAU Code scaling and uncertainty 

CSNI Committee on the Safety of Nuclear Installations 

DS Deterministic sampling 

FFTBM Fast Fourier transform based method 

FoM Figure of merit 

IC Initial condition 

GCI  Grid convergence index 

GPCE Generalised polynomial chaos expansion 

 GRS Gesellschaft für Reaktorsicherheit (German society for [nuclear] plant and reactor safety) 

H2TS  Hierarchical two-tiered scaling 

IET Integral effect test 

LES Large Eddy simulation 

LWR Light water reactor 

MSLB Main steam line break 

NPP Nuclear power plant 

NRC Nuclear Regulatory Commission 

NRS Nuclear reactor safety 

PCE Polynomial chaos expansion 
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PDF Probability density function 

PTS Pressurized thermal shock 

PV Pressure vessel 

PWR Pressurized water reactor 

RANS Reynolds-Averaged Navier-Stokes 

RE Richardson extrapolation 

SET Separate effect test 

SG Steam generator 

SRS Simple random sampling 

UQ Uncertainty quantification 

UMAE Uncertainty method by accuracy extrapolation 

V&V Verification and validation 

VVUQ Verification, validation and uncertainty quantification 

WG1 Writing group 1 

WG2 Writing group 2 

WG3 Writing group 3 

WGAMA Working Group for the Analysis and Management of Accidents 
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APPENDIX A 
ELEMENTS NEEDED TO CREATE A PIRT 

This appendix describes one possible way to build a PIRT for a thermal-hydraulic problem treated by CFD. This 

method was used in the EDF methodology (section 12).  

 To develop a PIRT, various available sources of information may be used. The following is a list of 

examples. 

• Experimental data 

• Observations of reactor behaviour 

• Expert assessment/judgement  

• CFD results, which could be preliminary results, code validation tests cases, or similar studies with 
the same physical phenomena involved, even only partially 

• Existing PIRT from another study or organisation 

• Existing analyses available in the literature 

The 7 main steps of a PIRT process 
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Define what a physical phenomenon is in a problem treated by CFD.  

Fluid mechanics deals with various scales, from dissipative turbulent structures to primary loop in a nuclear 
power plant. This leads to a large variety of possible physical phenomena involved in any problem treated in a 
CFD study. On the other hand, most phenomena are based on a few physical processes happening at small scales, 
specifically, inertia, friction, and heat and mass transfer.  

 First, a definition of a physical phenomenon is necessary in order to establish an objective and determine 
the scale of interest for describing transients treated by CFD. A physical phenomenon is an observed flow 
behaviour or a part of the flow behaviour at the scale of interest; combining all identified physical phenomena in 
a given problem should explain the whole investigated transient. In other words, the list of main physical 
phenomena involved is a way to exhaustively decompose the flow of interest. 

 For example, in a PTS, some of the transient physical phenomena are jet impact, thermal stratification, the 
plume effect, and wall heat transfer. In this example, turbulence and mixing are the main processes but they are 
too general to be in this list of phenomena. 

Define the parameters associated with the physical phenomena identified 

To introduce the PIRT table, a simple table identifying phenomena and parameters is suggested. 

Discern the dominant parameters (the figures of merit) from the parameters which influence the FoMs 

The figures of merit (FoMs) are those parameters that/I don’t know that play a direct and key role on the safety 
criteria. They are most often imposed by the physics of the transient. Depending on the safety scenario, a FoM 
can be a scalar or a multi-dimensional value over space and/or time. For any type of FoM, one has to determine a 
minimum required accuracy. This accuracy threshold has to be kept in mind when assessing the relevance of all 
steps in the VVUQ process. 

 The influential parameters are all the physical parameters related/relevant to the physical phenomena 
involved that have an influence on the FoM. The FoMs and the influential parameters both characterise the 
physical phenomena occurring in the transient. 

 The last parameter to identify is the uncertainty in the ranking, which is usually done by scoring the 
knowledge base, or knowledge level, for the phenomenon of interest. When a phenomenon is identified as being 
important but the corresponding knowledge level is low, it indicates that more effort must be applied using for 
example more research support. 

Rank the levels of influence and knowledge of the different parameters on the FoM according to 
importance 

Table A-1 is an example of the format the PIRT could take. 
Table A.1: A sample PIRT 

Phenomena: 
      Parameters 

Influence 
Level 

Knowledge 
Level 

Justification & Comments 

Phenomenon 1 High Medium  
Parameter 1-a High Low  
Parameter 1-b Medium Medium  
Parameter 1-c Medium High  

Phenomenon 2 Medium Medium  
Parameter 2-a Medium Low  
Parameter 2-b Low Medium  

Phenomenon 3  High  
Parameter 3-a High Low  

Justification and/or comments are necessary to give confidence in the rankings. 
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Non-dimensional Numbers 

From the exhaustive list of parameters influencing the main phenomena, it is possible to define the dimensionless 
numbers describing the transient of interest using the Buckingham Pi-Theorem. First, we have to verify that the 
non-dimensional numbers cover all the dominant phenomena and parameters involved in the transient. For 
example, in a physical situation with thermal stratification, two or three non-dimensional numbers from the 
following list are needed to sufficiently represent the phenomena associated with thermal stratification: the 
Reynolds number, the Froude number, the Grashof number, and the Rayleigh number or Prandtl number.  

 Non-dimensional numbers are thus the cornerstone of the definition of relevant experiments and domains 
of validation, and only a few of the most important numbers associated with a few key physical phenomena in a 
given situation may be sufficient to describe and quantify complex transients. So, despite a wide range of 
possible scales and physical phenomena, only a few fundamental processes are playing the most important roles. 

 Although non-dimensional numbers are very efficient tools in physical analysis, they are only used for 
comparative purposes with relative values. Physical phenomena happening in pipes and vessels of different 
plants or at different scales (experimental vs. industrial) can be compared this way. For this reason, the physical 
analysis and the definition of validation and application domain must be based on both the list of physical 
phenomena and the values of dimensionless numbers. 
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APPENDIX B 
THE CONCEPT OF A VALIDATION TABLE FOR CFD MODELS  

Nuclear safety usually establishes stringent requirements for the quality of CFD calculations. Existing methods 
of quality control and quality assurance have limitations for industrial CFD calculations due to the complex 
physical processes and geometry of the systems encountered in such calculations. 

 To solve this problem, OKB “GIDROPRESS” developed some validation approaches, which are based on 
NEA, AIAA and ASME recommendations as well as on the following considerations: 

• Creating a universal model for industrial application is virtually impossible. Therefore, a CFD model 
can be developed and applied to a well-defined and limited set of parameters of interest 𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3, …, 
𝑃𝑃𝑁𝑁 such as distribution of velocities, temperatures, concentrations; these parameters of interest usually 
define functionality, safety, reliability, or efficiency of the developed equipment. This set should be 
defined at the very beginning (for instance, within the PIRT). 

• A model provides a reliable result only in the validated range of the object’s geometric parameters 𝑝𝑝1, 
𝑝𝑝2, 𝑝𝑝3, …, 𝑝𝑝𝑆𝑆 (e.g. nominal size, wall roughness, manufacturing tolerances, thermal expansions) and 
thermal-hydraulic parameters (fluid properties, operating temperatures and pressures, etc., with 
𝑝𝑝1𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑝𝑝1 ≤ 𝑝𝑝1𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝2𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑝𝑝2 ≤ 𝑝𝑝2𝑚𝑚𝑚𝑚𝑚𝑚 where 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 are the upper and lower bounds of the 
validation range, and S is the total number of object parameters). 

• Each validation test must include a preliminary verification step. 

• A high-quality experiment is the closest approximation to reality and can be used to define reference 
values for target parameters. 

• The CFD code developer is responsible for model validation, incl. physical models and numerical 
schemes, in the framework of code V&V, which must be properly documented. 

 When using commercial codes (ANSYS-CFX, STAR-CCM +, STAR-CD, etc.),validating models for 
some physical phenomena such as the development and destruction of the hydrodynamic boundary layer, the 
development of a thermal boundary layer is often unnecessary. If new physical models need to be developed 
and/or if the validation conducted by the code developer is not sufficient, the user might need to conduct 
additional validation of these models using (i) adequate experimental data, (ii)the results of DNS calculations, or 
(iii) analytical solutions, if available. As a result, for considered physical models the maximum deviations of the 
calculation results compared to experimental or other data for each parameter of interest could be estimated 
∆PNmax(fi) = max �∆PN (fi)� with i = 1, 2, 3, … , k. If ∆PNmax(fi) exceeds the validated values, to the model must 
be improved or refined. 

 As part of the methodology developed by OKB “GIDROPRESS”, the object should be split into several 
levels of less complex subsystems. For each subsystem, corresponding experimental or other data should be 
defined for subsystem model validation. Let 𝑛𝑛 be the number of tests for each subsystem sufficient to validate the 
modelling of the physical phenomena taking place in the subsystem. Since it is often not possible to find a test 
universal enough for validation of a subsystem by all parameters of interest in the required range of parameters of 
the object, 𝑛𝑛 is usually greater than 1. In some cases, the transformation of dimensional parameters into 
dimensionless forms reduces the amount of required validation studies and makes finding adequate experimental 
data for validation easier. In this case, the number and nomenclature of the dimensionless parameters (e.g. 𝜁𝜁, 𝑁𝑁𝑁𝑁, 
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𝑅𝑅𝑅𝑅, 𝐺𝐺𝐺𝐺, 𝑅𝑅𝑅𝑅, 𝑀𝑀) described in the relationship between the object parameters and parameters of interest should be 
determined on the basis of the Buckingham 𝜋𝜋-theorem.  

 From the validation result using subsystem models, one can define a set 𝐾𝐾 × 𝑁𝑁 as the maximum deviation 
of calculation results compared to experimental data for considered subsystem models ∆𝑃𝑃𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) =
max �∆𝑃𝑃𝑗𝑗𝑗𝑗 (𝑝𝑝𝑖𝑖)� where 𝑖𝑖 = 1, 2, 3, … ,𝑛𝑛𝑗𝑗𝑗𝑗; 𝑗𝑗 = 1, 2, 3, … ,𝐾𝐾; 𝑘𝑘 = 1, 2, 3, … ,𝑁𝑁,;𝐾𝐾is the number of subsystems; 𝑁𝑁 
is the total number of parameters of interest; and 𝑛𝑛𝑗𝑗𝑗𝑗 is the total number of parameters considered in the 
framework of a validation test 𝑗𝑗𝑗𝑗. 

 If the difference between predicted and experimental data ∆Pjkmax(pi) does not exceed specified values 
(generally for industrial calculations these values are defined as 5% for the integral parameters and 10% − on a 
local parameter, the validation of the model of the object, taking into account mutual interactions between 
subsystems, can be done. As a base for validation in this case, one can consider industrial experimental data for 
the equipment being designed and equipment of previous generations or measurements on operating units 
obtained in the framework of commissioning tests. Such experiments are closest to the object of the study and 
focused on measuring the parameters of the object reflecting the functionality, safety, reliability, and efficiency 
of the equipment. These parameters are generally accepted as the parameters of interest for industrial 
applications. Settings models taking into account mutual influences such as the order of the numerical scheme, 
mesh, and the model of turbulence must be identical to those applied when validating models of subsystems. 

 As a result of the validation of models, taking into account the mutual influence, determines the maximum 
deviation of the results of numerical studies from the experimental data, taking into account the mutual 
influences of the individual subsystems ∆Pkmax(pi) = max �∆Pk (pi)� with i = 1, 2, 3, … , nkand k =
1, 2, 3, … , N. The presence of large differences between ∆Pkmax(pi) and ∆Pjkmax(pi) for some parameters of 
interest indicates the presence of errors in the model. Only after identifying and eliminating such errors can the 
model settings be transferred to the real object, i.e., the object of investigation. Changes in the model settings 
should be saved periodically throughout the validation testing process, from the subsystems to the final model of 
the object development.  

 A validation table is recommended for presentation of the results of the validation process, as shown below 
in Table B.1. Note that a methodology based on a validation table makes sense only if the final model for the 
object has been properly verified and sensitivity studies to the boundary conditions and to assumptions 
introduced in the model have been carried out. 
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Table B.1: Example of a validation matrix for a CFD model 

Para
meter of 
interest 

Validatio
n of physical 

models (if 
necessary) 

Validation of subsystem models Validation 
of models with 

mutual 
influence 

Subsystem 
1 

Subsystem 
2  Subsystem 

K 

𝑃𝑃1 
∆𝑃𝑃1𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑖𝑖) 

𝑖𝑖
= 1, 2, 3, … ,𝑘𝑘1 

∆𝑃𝑃11𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) 

𝑖𝑖
= 1, 2, 3, … ,𝑛𝑛11 

∆𝑃𝑃21𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) 

𝑖𝑖
= 1, 2, 3, … ,𝑛𝑛21 

 
∆𝑃𝑃𝐾𝐾1𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) 

𝑖𝑖
= 1, 2, 3, … ,𝑛𝑛𝐾𝐾1 

∆𝑃𝑃1𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) 

𝑖𝑖 = 1, 2, 3, … ,𝑛𝑛1 

𝑃𝑃2 
∆𝑃𝑃2𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑖𝑖) 

𝑖𝑖
= 1, 2, 3, … , 𝑘𝑘2 

∆𝑃𝑃12𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) 

𝑖𝑖
= 1, 2, 3, … ,𝑛𝑛12 

∆𝑃𝑃22𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) 

𝑖𝑖
= 1, 2, 3, … ,𝑛𝑛22 

 
∆𝑃𝑃𝐾𝐾2𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) 

𝑖𝑖
= 1, 2, 3, … ,𝑛𝑛𝐾𝐾2 

∆𝑃𝑃2𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) 

𝑖𝑖 = 1, 2, 3, … ,𝑛𝑛2 

… … … …  … … 

𝑃𝑃𝑁𝑁 
∆𝑃𝑃𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑖𝑖) 

𝑖𝑖
= 1, 2, 3, … ,𝑘𝑘𝑁𝑁 

∆𝑃𝑃1𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) 

𝑖𝑖
= 1, 2, 3, … ,𝑛𝑛1𝑁𝑁 

∆𝑃𝑃2𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) 

𝑖𝑖
= 1, 2, 3, … ,𝑛𝑛2𝑁𝑁 

 
∆𝑃𝑃𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) 

𝑖𝑖
= 1, 2, 3, … ,𝑛𝑛𝐾𝐾𝐾𝐾 

∆𝑃𝑃𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖) 

𝑖𝑖 = 1, 2, 3, … ,𝑛𝑛𝑁𝑁 

 

 A validation table greatly simplifies the task of organising and systematising the results of validation and 
can be used in subsequent stages for error estimation for various parameters. Even when only partially 
completed, a validation table makes quality control of models easier and reduces the risk of errors at different 
stages of creating the model of the object of interest. This approach has proved its effectiveness in solving 
industrial problems. 
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