

50 MW MODULAR URBAN NUCLEAR REACTOR

THE ROLE OF HIGH-FIDELITY DIGITAL TWINS

Emilio Baglietto, Associate Professor of NSE

IUS@ArtEZ

Nuclear Batteries blend naturally in a urban environment J. Buongiorno MIT, Iain Macdonald ArtEZ

"...computational methods drive design"

Extensive use of Predictive Simulation have allowed granting of this ETOPS capability prior to the A350 entrance in service

Extended range Twin Operations (ETOPS) aka Engines Turning Or Passengers Swimming

My position in a nutshell

- 1. LOW COST DISPATCHABLE ZERO CARBON ENERGY=NUCLEAR POWER (*I assume we all agree on this point*)
- I will try to convince you that predictive Modeling and Simulation (M&S) based on High-fidelity methods is absolutely necessary for the future of nuclear power
- 3. I will argue that while **the methods are mature**, their adoption in design and operation is where we need to work.
- 4. I hope to stimulate your reactions

"...computational methods drive design"

NSE Nuclear Science and Engineering

"...even the bad ones"

" "...computational methods drive design" **50MW MODULAR URBAN NUCLEAR REACTOR HIGH-FIDELITY Digital Twins** Baffle Plate Ch Tb St Gen R Ch Cr Hx Ch **PWR** Batt **Reactor Vessel IUS@ArtEZ** http://www.neimagazine.com/

Courtesy of Iain Macdonald

New NPP require Digital Optimization

- High-fidelity Digital Twins are a key enabling technology supporting a broader need for Digital Optimization
- Taking the example of current SMR design we clearly see the lack of Optimization
 - ✓ Plants are smaller GENIII+
 - Onsite Labor hours per MWe for many SMRs are not different than large LWRs
 - ✓ Still require specialized equipment (RPV)

Concrete Volume/MWe of Safety Grade Buildings

Estimated Numbers -Prof Koroush Shirvan, MIT and Engineeri

New NPP require Digital Optimization

- High-fidelity Digital Twins are a key enabling technology supporting a broader need for Digital Optimization
- Taking the example of current SMR design we clearly see the lack of Optimization
 - ✓ Plants are smaller GENIII+
 - Onsite Labor hours per MWe for many SMRs are not different than large LWRs
 - ✓ Still require specialized equipment (RPV)
- The "excuse" is too often the regulatory environment → <u>Regulators have come a long way</u>

Nuclear Designers <u>Often</u> Invest less then Vacuum Cleaners Designers to optimize their flow efficiency.

NSE Nuclear Science & Engineering at MIT seience : systems : society

Thank you for your attention !

DIGITAL & MODEL BASED PROJECT DELIVERY

Enabler of energy & Digital revolutions

assystem

COMPLEXITY IN ACTION: NUCLEAR NEW BUILD PROJECT

> 500,000 components
(electrical, mechanical, I&C, etc.)

~ 500 km of piping (across all the plant)

~ 2,000 km of cables (across all the plant)

~ 500,000 m3 of concrete (in all the plant)

Volume of reinforcement bars Equivalent to 10 Tours Eiffel

6 years from the first concrete to day 1 of operations

>100 millions of unit data (requirements, reports, schemes, drawings, etc.)

CONVERGENCE BETWEEN DATA AND SYSTEM ENGINEERING

Digital Continuity

CONVERGENCE BETWEEN MBSE & DATA

Document to Data, Modelling of workflow, process, Project delivery design

ASSET INFORMATION HUB FOR DESIGN/CONSTRUCTION/COMMISSIONING

ASSET INFORMATION HUB FOR OPERATION & MAINTENANCE

THE CONCEPT OF DIGITAL TWIN @SYSTEM LEVEL

System based Digital Twin':

Digital Twin functionalities :

- Seeks out correlations and causality to anticipate risk
- Helps to understand how a particular strategy will impact delivery and its KPIs in the future, and in turn best mitigate the identified risk
- Calculates an 'PDM-based confidence index' for the delivery of the project
- Being able to capture lessons learnt from previous projects

Risk reduction

- Threshold-based alerts
- Anomaly detection
- Root-cause analysis
- Pattern recognition

Decision making

- Advanced visualisation
- What-if scenarios
- Optimisation under constraints
- Multi-agent modelling

LESSONS LEARNT FROM OTHER SECTORS

THE SPATIAL CONTEXT : A INCREASING CHALLENGE

Affordable access to space :

- Breaking Space Launch "cost barrier" is a main enabler for future Space Economy

The need for speed :

AUTOMOTIVE SECTOR

Standardisation

ON assystem

Project Director

Construction Manager

Organizational Breakdown Structure (OBS)

Quality Manager

Safety Manager

Project Manager

Engineering Manager

Project Configuration

Baseline

Infrastructure

Platform approach, Modularity

Work Breakdown Structure (WBS)

KEY MESSAGES

Digital twin at System Level as an enabler of the Project Delivery Model

Important to introduce MBSE and Data Centric Approach

□ NLP, Artificial Intelligence used to structure the data and to automatize process/workflows/tasks

- Lessons learnt from other sectors important and digitalisation of lessons learnt will de-risk the project delivery
- □ Nuclear is at the beginning of its industrialization journey

This information is provided by Rolls-Royce in good faith based upon the latest information available to it, no warranty or representation is given; no contractual or other binding commitment is implied

> Non-Confidential © 2021 Rolls-Royce | Not Subject to Export Control

Rolls-Royce SMR

NEA Workshop on Digital Transformation: Opportunities and Challenges for the Nuclear Sector 27th / 28th May 2021

bam

nuttall

assystem

NATIONAL NUCLEAR

NUCLEAR AN

JACOBS

LAING D'ROURKE

SNC+LAVALIN

Dr Nigel Hart - Head of Digital

The Rolls-Royce SMR is a modular build **power station**, **not a nuclear reactor**

- ✓ Capital cost under £1.8 Bn
- ✓ Typical LCOE of electricity c.£50 per MWh
- ✓ Compact site footprint
- ✓ 60-year plant lifetime

✓ Adaptable design

Non-Confidential © 2021 Rolls-Royce | Not Subject to Export Control

Integrated Modular Factory Built Power Plant

Low Cost Nuclear

- Use of proven Technology
- Simplified and Standardised Equipment
- Predictable and Repeatable

Deliverable Solution

- Factory Built Commodity
- Site canopy for controlled site environment
- Maximize Productivity and Innovation across Fleet

Investable Product

- Factory solution to build out Fleet
- Significantly reduced construction risk
- Acceptable Completion Risk given commodity nature of product

Innovation for benefit, not for innovation sake

Non-Confidential © 2021 Rolls-Royce | Not Subject to Export Control

A fleet approach can realise further savings to operators

- Rolls-Royce has extensive experience in Aerospace and Marine in monitoring customer assets to optimise performance
- All units can be monitored against the performance of other units and normalised for age and environmental factors
- Central Ops centre analysis will
 - Optimise performance across the fleet
 - Minimise downtime / increase capacity factor
 - Provide early insights into future demands during maintenance schedules
- Sharing of engineering capability across the fleet

Centrally monitoring Ops centre

This information is provided by Rolls-Royce in good faith based upon the latest information available to it; no warranty or representation is given; no contractual or other binding commitment is implied

> Non-Confidential © 2021 Rolls-Royce | Not Subject to Export Control

Rolls-Royce SMR

Dr Nigel Hart Head of Digital – UK SMR nigel.hart@rolls-royce.com

TW

NATIONAL NUCLEAR

NUCLEAR AMRO

NEA Digital Transformation An Operator/Owner View

Brett Plummer

Why Digital for Nuclear Plants

- Safety and Reliability Decrease Risk Decrease Cost
 - "The Human Challenges the Equipment, the Equipment Challenges the Human"
 - Human Performance Error Prevention
 - Self Diagnostics
 - Decision Making
 - Decrease Labor Cost
 - Efficiency in Planning

Why Digital for Nuclear Plants

- Safety and Reliability Decrease Risk Decrease Cost
 - Equipment
 - Single Point Vulnerability
 - Condition Based Maintenance Predictive Analytics
 - Efficiency Information Common Platform
 - Trends Common platform
 - Minimize Inspections and Testing
 - Predictability Reliability

What is the Challenge for New Plants

- Vision for Future Nuclear
 - Digital Innovation in Development of SMRs
 - Do we need people in local control rooms?
 - Do we have a centralized support center? Big data
 - Do Humans manipulate equipment? Minimize HU events
 - Who do we hire for personnel? IT or typical engineering disciplines or a hybrid?
 - How often do Operators perform training? Level of simulation based on simplicity of the SMRs
 - What is the span of the Regulator? Can we use AI?
 - Who maintains design control?
 - How do we minimize cost?

What is the Challenge

- Barriers to Digitalization
 - Change is Bad 40 years Self looking
 - Infrastructure to Support a fleet chicken and the egg
 - Qualification Process and Cost
 - Installing Digital Systems that are Sustainable
 - The Right Integrated Expertise Design through Installation
 - Cost Effectiveness

