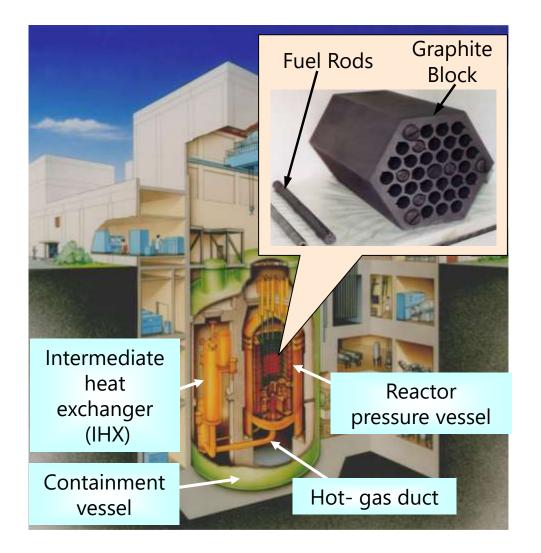


Perspectives on the Role of JAEA towards Industrial Application of HTGR

OECD/NEA WS High temperature reactor and industrial heat application October 7, Online

Hiroyuki Sato (Email: sato.hiroyuki09@jaea.go.jp) Japan Atomic Energy Agency



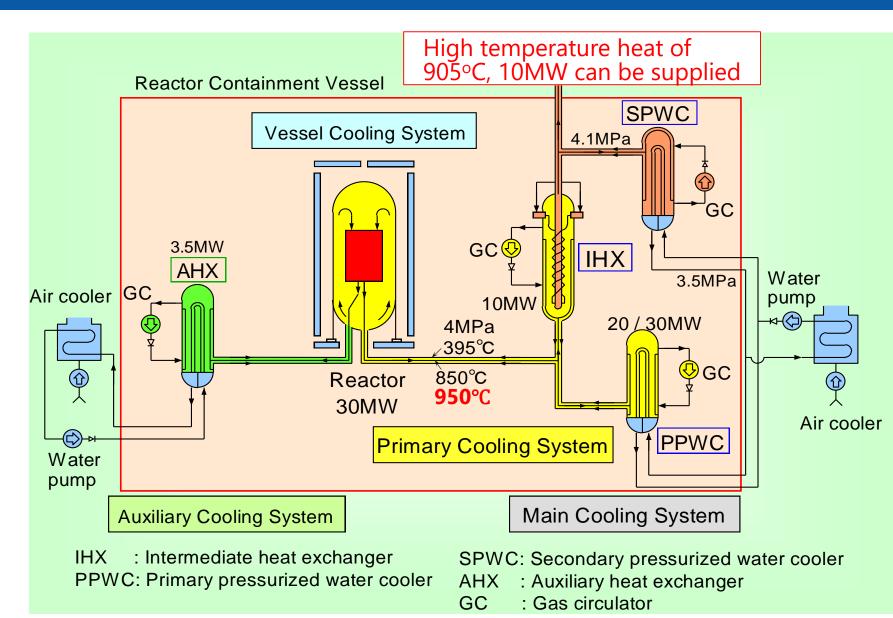
- HTTR Technical Features, Operation
 & Licensing Experience, Future Tests
- Perspectives on the role of JAEA towards Industrial Application of HTGRs

HTTR: High Temperature Engineering Test Reactor

The only prismatic-type High Temperature Gas-cooled Reactor (HTGR) in operation in the world

Major Specifications						
Thermal power	30 MW					
Fuel	Coated fuel particle / Prismatic type					
Core material	Graphite					
Coolant	Helium					
Inlet temperature	395°C					
Outlet temperature	950°C					
Pressure	4 MPa					

Major Achievements


First criticality	: November,
Full power operation	: December,
50 days continuous 950°C operation	: March, 201
Obtain permission of changes	
to reactor installation in conformity to	: June, 2020
New Regulatory Requirements	
Restart operation	: July, 2021

- ovember, 1998
- ecember, 2001
- arch, 2010
- ine, 2020

2

Technical Features of HTTR

Nuclear Applied Heat Technology Division, Proc. 1st JAEA/KAERI Information Exchange Meeting on HTGR and Nuclear Hydrogen Technology, August 28-30, 2006, Oarai. Japan.

- Capable to supply high temperature heat
 - 50 day continuous operation at 950°C reactor outlet temperature demonstrated
 - Maximum 905°C, 10MW high temperature heat can be supplied by modification of the secondary helium cooling system

HTGR safety feature demonstration tests licensed by regulator

- Key safety features of HTGR can be demonstrated by actual test
 - intrinsic shutdown without control rod insertion, passive decay heat cooling from outside of reactor, etc.

Licensing Experiences of HTTR

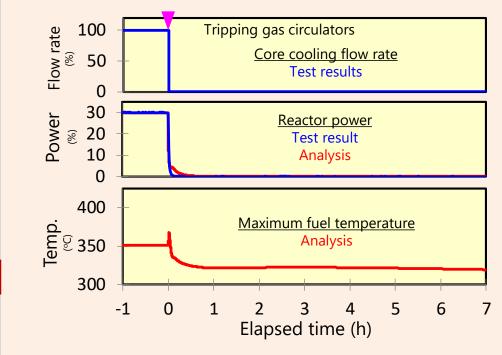
- Following the nuclear accident at the TEPCO's Fukushima Daiichi nuclear power station on March 11, 2011, revised regulatory requirements were issued by the Nuclear Regulation Authority (NRA) in July 2013.
- JAEA had submitted the application including evaluation results satisfying the New Regulatory Requirements to the Nuclear Regulation Authority (NRA) on <u>November 26, 2014</u>.
- Through many discussions with the NRA, <u>on June 3, 2020, JAEA obtained the permission</u> by the NRA for changes to Reactor Installation of the HTTR.
- HTTR has restarted its operation on July 30, 2021.

Calendar year	2014	2015	2016	2017	2018	2019	2020	2021
Permission of changes to reactor installation							June	23
Operational Safety Programs								
Approval of the Design and Construction Method								
Inspection						Pre-service	inspection	
Restart								🔻 July

E. Ishitsuka, "Experience of HTTR Licensing for Japan's New Nuclear Regulation," GIF Webinar Series 52, April 21, 2021.

Licensing Experiences of HTTR – Seismic Classifications

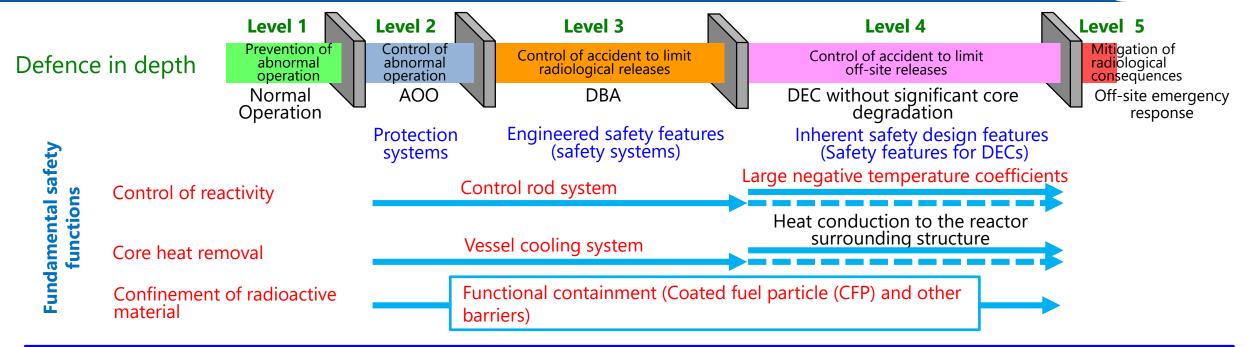
Safety characteristics of the HTTR


Because of the inherent characteristics of basic elements, i.e. refractory coated fuel particles, inert, single-phase helium coolant and graphite moderator with large heat capacity, the HTTR can maintain in a stable state under loss-of-cooling and/or reactivity control conditions.

Obtained permission from NRA to reclassify seismic classification of SSCs to lower class

- Core heat removal: S class to B class
- Reactor internal structure: S class to B class.

HTTR safety demonstration test


- Initial power 30% (9MW)
- Reducing core flow rate to zero by tripping all circulators
- VCS operation maintained
- No scram operation (No CR insertion)

- Reactor intrinsically shut down as soon as the core cooling flow rate to zero.
- Reactor is kept stable long after the loss of core cooling

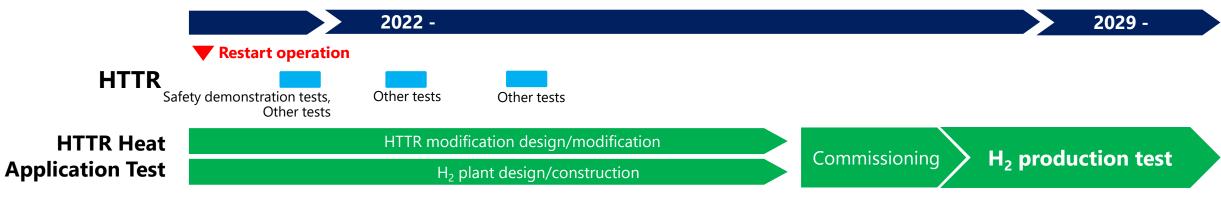
Licensing Experiences of HTTR - BDBA -

The NRA review concluded that (1) significant core degradation including core melting may not occur by postulated BDBAs* and (2) specific SSCs are not required to cope with BDBAs*

- HTTR has restarted its operation without significant additional reinforcements due to the inherent safety features
- Safety design established through the licensing can be used in commercial HTGR

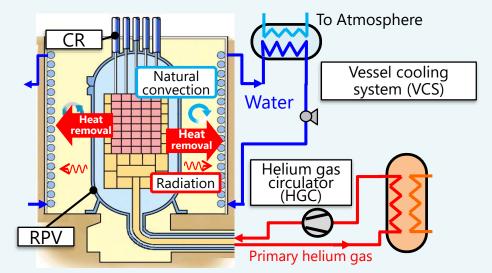
Remaining items

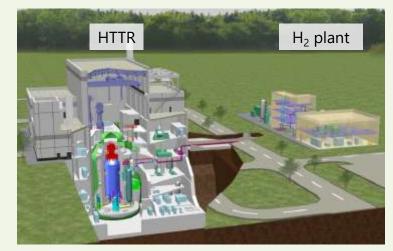
Establishment of safety standards for commercial HTGR including requirements for coupling heat application system to the nuclear facility and the use of PRA in safety management


High expectation OECD/NEA CSNI/WGRISK activities related to advanced reactors

*HTTR BDBAs DBA + failure of reactor scram DBA + failure of heat removal from the core DBA + failure of containment vessel

E. Ishitsuka, "Experience of HTTR Licensing for Japan's New Nuclear Regulation," GIF Webinar Series 52, April 21, 2021.

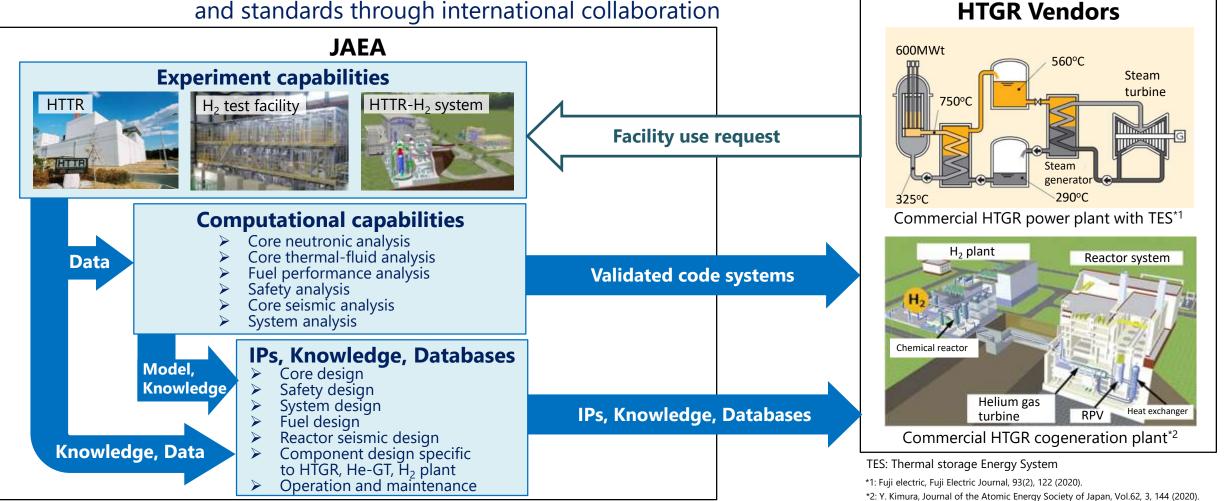

HTTR Future Tests


HTTR Safety Demonstration Test (OECD/NEA CSNI LOFC Project)

- Development of safety analysis code system
- Demonstration of HTGR safety features
 - > Loss of forced cooling test (All HGC tripped, 100% power)
 - > Loss of core cooling test (All HGC + VCS tripped, 30% power)

HTTR-heat Application Test

- Development of coupling technology between HTGR and H₂ plant
- Demonstration of nuclear hydrogen production
 - > Continuous H_2 production test
 - > Transient simulation test



Perspectives on the role of JAEA

Role of JAEA Develop key technologies needed by commercial HTGR

- Provide R&D test beds of unique experimental and computational capabilities, as well as knowledge and databases to industry
- Promotion of international standardization of technologies and standards through international collaboration

- The HTTR is the only prismatic-type HTGR in operation in the world.
- The HTTR can provide valuable data including coupled neutronic/thermal-fluid characteristics, integrated nuclear and chemical plants characteristics, etc. that can be used for validation of safety analysis tools and demonstration of key technologies needed by commercial HTGR.
- JAEA established safety design through licensing process by NRA for changes to Reactor Installation of the HTTR in conformity to the New Regulatory Requirements.
- JAEA can provide R&D test beds of unique experimental and computational capabilities, as well as knowledge and databases to industry.