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ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

The OECD is a unique forum where the governments of 38 democracies work together to address the economic,
social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand
and to help governments respond to new developments and concerns, such as corporate governance, the
information economy and the challenges of an ageing population. The Organisation provides a setting where
governments can compare policy experiences, seek answers to common problems, identify good practice and work
to co-ordinate domestic and international policies.

The OECD member countries are: Australia, Austria, Belgium, Canada, Chile, Colombia, Costa Rica,
Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan,
Korea, Latvia, Lithuania, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the
Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Tiirkiye, the United Kingdom and the United States. The
European Commission takes part in the work of the OECD.

OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on
economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its
members.

NUCLEAR ENERGY AGENCY

The OECD Nuclear Energy Agency (NEA) was established on 1 February 1958. Current NEA membership
consists of 34 countries: Argentina, Australia, Austria, Belgium, Bulgaria, Canada, Czechia, Denmark, Finland,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands,
Norway, Poland, Portugal, Romania, Russia (suspended), the Slovak Republic, Slovenia, Spain, Sweden,
Switzerland, Tiirkiye, the United Kingdom and the United States. The European Commission and the International
Atomic Energy Agency also take part in the work of the Agency.

The mission of the NEA is:

— to assist its member countries in maintaining and further developing, through international co-operation, the
scientific, technological and legal bases required for a safe, environmentally sound and economical use of
nuclear energy for peaceful purposes;

—to provide authoritative assessments and to forge common understandings on key issues as input to
government decisions on nuclear energy policy and to broader OECD analyses in areas such as energy and
the sustainable development of low-carbon economies.

Specific areas of competence of the NEA include the safety and regulation of nuclear activities, radioactive
waste management and decommissioning, radiological protection, nuclear science, economic and technical
analyses of the nuclear fuel cycle, nuclear law and liability, and public information. The NEA Data Bank provides
nuclear data and computer program services for participating countries.

This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory, to the
delimitation of international frontiers and boundaries and to the name of any territory, city or area.

Corrigenda to OECD publications may be found online at: www.oecd.org/about/publishing/corrigenda.htm.
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Committee on the Safety of Nuclear Installations (CSNI)

The Committee on the Safety of Nuclear Installations (CSNI) addresses NEA
programmes and activities that support maintaining and advancing the scientific and
technical knowledge base of the safety of nuclear installations.

The Committee constitutes a forum for the exchange of technical information and for
collaboration between organisations, which can contribute, from their respective
backgrounds in research, development and engineering, to its activities. It has regard to
the exchange of information between member countries and safety R&D programmes of
various sizes in order to keep all member countries involved in and abreast of
developments in technical safety matters.

The Committee reviews the state of knowledge on important topics of nuclear safety
science and techniques and of safety assessments, and ensures that operating experience
is appropriately accounted for in its activities. It initiates and conducts programmes
identified by these reviews and assessments in order to confirm safety, overcome
discrepancies, develop improvements and reach consensus on technical issues of
common interest. It promotes the co-ordination of work in different member countries
that serve to maintain and enhance competence in nuclear safety matters, including the
establishment of joint undertakings (e.g. joint research and data projects), and assists in
the feedback of the results to participating organisations. The Committee ensures that
valuable end-products of the technical reviews and analyses are provided to members in
a timely manner, and made publicly available when appropriate, to support broader
nuclear safety.

The Committee focuses primarily on the safety aspects of existing power reactors, other
nuclear installations and new power reactors; it also considers the safety implications of
scientific and technical developments of future reactor technologies and designs.
Further, the scope for the Committee includes human and organisational research
activities and technical developments that affect nuclear safety.

BENCHMARK ON EXTERNAL EVENTS HAZARD FREQUENCY AND MAGNITUDE STATISTICAL MODELLING



4 | NEA/CSNI/R(2021)10

Foreword

The modelling of external hazards encompasses different technical aspects, depending
on the type of hazard, though a general feature of hazards is that they produce off-normal
conditions that can impact nuclear installations. There is also a coupling of the hazard
with its associated risk analysis models. A risk analysis contains a set of scenarios,
frequencies and associated consequences, developed in such a way as to inform
decisions. A scenario contains an initiating event and (usually) one or more subsequent
events leading to an end state that reflects the issue of concern. The objective of this
benchmark study is to focus on the initiating event by facilitating an exercise on the
statistical modelling for assessing hazard frequency and magnitude for external events
risk assessment. This benchmark study report provides details (data and overall
objectives) for the benchmarking exercise by specifying synthetic data for a hypothetical
external event (e.g. precipitation, extreme temperatures and high winds). The analysis
steps and modelling results of the benchmark participants are provided and summarised.
Overall conclusions from these submissions are described to gain insights from the
activity.

This report was approved by the Nuclear Energy Agency (NEA) Committee on the
Safety of Nuclear Installations (CSNI) at the 69" meeting of the CSNI held on 2-3 June
2021 (NEA/SEN/SIN(2021)1, not publicly available).
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Executive summary

The March 2011 accident at the Fukushima Daiichi Nuclear Power Plant triggered
discussions about natural external events that are low-frequency but high-consequence.
To address these issues and determine which events would benefit from international co-
operative work, the NEA Committee on the Safety of Nuclear Installations (CSNI)
established the Task Group on Natural External Events (TGNEV) at its June 2013
meeting. In June 2014, the CSNI decided to re-organise TGNEV into a Working Group
on External Events (WGEV) to improve the understanding and treatment of external
hazards and support the continued safety performance of nuclear installations as well as
improve the effectiveness of regulatory practices in NEA member countries. The WGEV
is composed of a forum of experts for the exchange of information and experience on
external events in NEA member countries, thereby promoting co-operation and
maintenance of an effective and efficient network of experts.

At its 61% meeting, the CSNI approved the recommended task on the benchmark on
external events hazard frequency and magnitude statistical modelling, to be pursued by
the WGEV. Modelling of these external events is a common practice in hazard and risk
assessments in many countries. Having a valid statistical approach to model these
hazards is important. However, current practice indicates a wide variety of approaches
being used and a lack of appreciation of the uncertainties inherent to these types of
statistical models. The objective of this activity is to provide a benchmark suitable to
explore the application of typical approaches to external hazard representation through
a data-informed process. This report captured two types of benchmarks, one with data
and model provided and one with just data provided (a “blind test”).

In the report is a summary of statistical modelling approaches from the organisations
Electricité de France (EDF), the Finnish Meteorological Institute (FMI), the Idaho
National Laboratory (INL), the Institut de Radioprotection et de Sireté Nucléaire
(IRSN), and the Korea Atomic Energy Research Institute (KAERI).

Several observations can be made related to the approaches used and results from the
benchmark for external hazards.

o Different statistical approaches such as regression or probability distribution
models can provide reasonable hazard frequency and magnitude estimations for
time periods where data exist.

e Predictions for long return periods (e.g. much greater than the existing data time
collection) can prove challenging for some types of models and data sets.

e Rather than focusing on predictions of a magnitude for a particular hazard, an
alternative approach might be to evaluate the probability of exceeding a critical
level in a future time interval.

e If an underlying physical phenomenon that drives an external hazard is
unbounded then predictions for the hazard may be underestimated.

e Capturing uncertainties in the hazard predictions is not typically performed.
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Based upon the observations made from the benchmark, several potential future WGEV
activities are recommended:

e The availability of statistical open-source tools and frameworks offers the
potential for standardised approaches for representing the frequency/magnitude
hazards and should be investigated for hazard and risk applications.

e Having knowledge of the underlying hazard phenomena could improve the
predictions made from models. For example, availability of a maximum upper
bound (e.g. a physical limit) could help to improve long-term predictions. Future
benchmarks should investigate the application of physical phenomena with
hazard modelling.

e The use of “paleo-data” for a period longer than that recorded in actual data sets
could have resulted in better predictions from the statistical models. The
availability of this type of data, though, is not well understood for some types of
hazards, and should be investigated for external hazards of interest to the WGEV.

e Uncertainties inherent in hazard model predictions should be better understood
and quantified as a part of validation.
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1. Introduction

1.1 Background

As an input into risk analysis modelling and simulation, a hazard initiating event (IE) is
typically considered as the starting point for risk models. Since the IE both contributes
to the risk quantification results and provides the boundary conditions for the rest of the
hazard scenarios, effective modelling of the frequency and magnitude for different
external events using data-driven methods can be applied. However, current practice has
shown a variety of technical approaches, models, and limitations in validation of these
approaches (for example, see Figure 1.1). Consequently, this benchmark study is
intended to demonstrate and capture commendable practices in formulating and
assessing the quantification of external event IEs when using statistical models.

This benchmark was open to a variety of technical communities including academia,
government agencies, industry, research institutes, and technical and scientific support
organisations (TSOs). Chapter 2 of this report provides the case studies under
consideration of this benchmark. An overview of the results of the participant
submissions is presented in Chapter 3. Overall insights and conclusions are provided in
Chapter 4. Detailed submissions are listed in the Annexes.
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Figure 1.1. Example of the variety in potential modelling choices for magnitude-probability representation
of a streamflow initiating event
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Source: OECD (2014), OECD Economic Outlook: Statistics and Projections (database),
http://dx.doi.org/10.1787/data-00688-en.

1.2 Objective

The objective of this benchmark study was to facilitate an exercise on statistical
modelling in order to better understand the quantitative technical analysis steps and
processes used for assessing hazard frequency and magnitude in external events risk
assessments. This benchmark study report provides details (data and overall objectives)
for the benchmarking exercise (in Chapter 2) by specifying synthetic data for a
hypothetical external event (e.g. precipitation, extreme temperatures, high winds).
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1.3 Overview of the exercises

In terms of scope, the benchmark exercise on the analysis and assessment of the hazard
frequency/magnitude (called “the benchmark™ in this report) for external events risk
assessment covers the description of probabilistic hazard modelling, its associated
uncertainty characterisation, and the process used for analysis and assessment. The
information that was provided to, and asked of, the benchmark participants
encompassed:

e Hypothetical observational data representing an external hazard that have been
created from synthetic models (this type of model is used to create synthetic data
generated by a computer). Two cases are described: (1) a fully revealed “open”
case where both the synthetic data and the synthetic model producing the data
are provided, and (2) a “blind-test case” where only the synthetic data are
provided.

e Descriptions by the participants of the assumptions made to create the hazard
frequency/magnitude model(s), the qualitative and quantitative results of the
model(s), the process used to assess the adequacy of the model(s) and the results
of the model adequacy assessment. For this benchmark, phenomenologically-
based evaluation and modelling will not be considered since only “observational-
type” data (derived from a synthetic model) are provided, resulting in statistical-
types of models to be considered. However, more complicated modelling
situations incorporating phenomena physics and/or spatial considerations may
be proposed for a future benchmark.

The specific choice of model(s) to be considered by benchmark participants is not limited
a priori but will need to be able to incorporate the data and should, ideally, be able to
provide a consideration of prediction uncertainty.
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1.4 Glossary

This section contains a list of definitions for key terms used in this benchmark.

Aleatory uncertainty — Pertaining to stochastic (non-deterministic) events, the outcome
of which is described by a probability. From the Latin alea (game of chance, die).

Adequacy assessment — The process of judging, both qualitatively and quantitatively,
the predictive ability of a model used for decision making.

Data — Distinct observed (e.g. measured) values of a physical process. Generally, data
may be subject to uncertainties, such as imprecision in measurement.

External event — An event originating outside a nuclear power plant that directly or
indirectly causes an initiating event.

Hazard — Anything that has the potential to cause an undesired event or condition that
leads to damage.

Hazard curve — A model that relates the occurrence frequency of a hazard to the
magnitude (e.g. intensity of an earthquake, precipitation rate, flood water level,
temperature level) of the hazard.

Model — A mathematical construct that converts data and information into knowledge.
Two types of models are used for risk analysis purposes, probabilistic (or aleatory) and
deterministic.

Statistical model — A model that represents complex phenomena stochastically.
Examples of common statistical approaches used in risk assessment include extreme
value, exponential, Weibull and Poisson models.

Synthetic data — Data that are generated from computational models instead of from
actual observation.

Synthetic model — A computational model that is designed to produce data that mimic
actual observed data.
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2. Benchmark problem description

2.1 Data generation via synthetic models

Rather than real data gathered from the external hazard community, synthetic examples
of a hypothetical physical process (e.g. local precipitation, high winds) are used for the
benchmark. The reason for this is that because synthetic cases are used, the underlying
data-producing mechanisms are known (exactly), as opposed to real cases, where they
are not known. Thus, it is possible to assess how well data-driven models perform from
a predictive standpoint. Furthermore, since synthetic models are created and run on a
computer to simulate data, it is possible to control the data-generating process, including
accounting for elements such as the uncertainty present in the synthetic data.

In general, a synthetic model is an equation that has the functional form of:
Model output = f(inputs) * Uncertainty

For example, a simple linear model with no uncertainty used to represent a hypothetical
hazard frequency/magnitude relationship could be expressed as:

Magnitude =a * ¢

where the magnitude could be represented in terms of some observable quantity (e.g.
height about a river flood stage, quantity of rain in an hour, velocity of wind, depth of
snow in a day), a is a changeable parameter used to control the output of the synthetic
model, and ¢ is a time interval — or return frequency — that “sees” the observable quantity
described by the magnitude term. In this case, longer return frequencies would produce
larger synthetic events in a linear fashion.

2.2 Case 1 — Known model producing the synthetic data

The synthetic model used for the first exercise (Case 1) is:
M =0.5+0.5 *logio(a * t).

This synthetic example is constructed so that different values of “return time intervals”
t produce a hypothetical (but known since it comes from the synthetic model) magnitude
M for an annual maxima event. It is possible to use these types of models to produce
“synthetic data” where different event outcomes are predicted as a function of time (e.g.
producing a flooding hazard curve). As used in this benchmark, the synthetic model
serves as surrogate for a complex phenomenological process.

One characteristic in Case 1 is that the data generation process produces “extreme
events” such that the larger the event, the less frequently the event is seen — in other
words the return interval becomes large as the event magnitude increases. Consequently,
the units (italicised) that are present in the Case 1 synthetic model are:

M metres = 0.5 metres + 0.5*logio(a years™ * t years) metres.
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For Case 1, the “a variable” is set to 1. Thus, it is now possible to plot the magnitude of

the event that is “produced” by Case 1 for select times up to a return interval of 10 000
years (see Figure 2.1).

Figure 2.1. Case 1 plot up to a return period of 10 000 years
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However, what is important for this benchmark is that hypothetical observational data
(from a synthetic model) is provided for the hazard frequency/magnitude modelling. For
Case 1, this data is shown in Table 2.1.

Table 2.1. Synthetic data for Case 1

Return period (years) 1 2 5 10 50 100 | 500 | 1000 = 2000 10 000
Magnitude (metres) 050 065 08 | 10 14 1.5 1.9 2.0 2.2 25

Participants were asked to use the data for Case 1 and provide a model that best described
the frequency/magnitude relationship and the associated analysis and insights. The
results of this analysis should include those areas identified in Chapter 3 of this
benchmark, including:

e Qualitative aspects and insights
o assumptions made to create the hazard frequency/magnitude model;
o the process used to assess the adequacy of the model.

e Quantitative aspects and insights including

o the type of model describing the hazard frequency and magnitude statistical
results;

o uncertainties of the model - assessing uncertainty is important for both
validation and prediction (NRC, 2010);

o results of the model adequacy assessment or validation.
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2.3 Case 2 — Unknown model producing the synthetic data

For Case 2, the synthetic model used was not provided to the participants. However,
three parts were provided for this example: part (a), which provides the synthetic data
(ten data points) with no uncertainty on the data points provided; part (b), which provides
additional synthetic data (26 data points) with no uncertainty on the data points provided;
and part (c), which has uncertainty estimates on some of the data. Any of the parts could
have been evaluated by participants.

For part (a), the synthetic data output from the unknown model are shown in Table 2.2.

Table 2.2. Synthetic data for Case 2(a)

Return period (years) 1 2 5 10 50 100 500 1000 3 000 10 000
Magnitude (metres) 053 053 | 054 055 059 062 0.79 0.95 1.6 4.0

For part (b), the synthetic data output from the unknown model are shown in Table 2.3.

Table 2.3. Synthetic data for Case 2(b)

Return period (years) 1 2 5 10 15 20 25 30 40
Magnitude (metres) 053 @ 053 054 055 @ 0.56 0.56 0.57 0.57 0.58
Return period (years) 50 60 70 80 90 100 125 150 175
Magnitude (metres) 059 @ 060 | 060 @ 0.61 0.62 0.62 0.63 0.65 0.66
Return period (years) 200 300 400 500 750 1000 3000 10000
Magnitude (metres) 0.67 @ 0.71 075 @ 079 | 087 0.95 1.57 3.97

For part (c), the synthetic data for long time intervals are presumed to not be known
exactly. For these times (500 years and longer), an estimate of the uncertainty on the
magnitude has been provided and is shown in Table 2.4.

Table 2.4. Synthetic data for Case 2(c)

Return period (years) 1 2 5 10 50 100 = 500 | 1000 3000 10000
Magnitude (metres) Mean 053 053 054 055 | 059 062 079 0.95 1.6 4.0
SDev.* S - - - - 0.04 = 0.06 0.15 0.46
Dok - - - - - 072 | 0.85 1.3 3.2
95t - - - - - 0.85 1.1 1.8 4.7
Note:

* SDev. is the standard deviation.

** A “-” indicates information that is not available.

##% The 5™ and 95" indicates a 5" percentile and a 95" percentile value, respectively. In other words, there
is a 0.05 probability that the magnitude is less than or equal to 0.72 metres for an event with a return period
of 500 years.

The synthetic model used for Case 2 was:

-1 % t0.19

M metres = 0.5 metres + 0.01 * b * exp (1 years years) metres.

where b is normal distribution with a mean of 1.1 and a standard deviation of 0.15. The
use of a normal distribution in this synthetic model provides a degree of “noise” or
stochastic variation in the data points that are provided via the model. Using this model,
it is possible to plot the magnitude of the event that is “produced” by Case 2 for select
times up to a return interval of 10 000 years (see Figure 2.2).
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Figure 2.2. Case 2 plot up to a return period of 10 000 years

4,50

4.00

Magnitude (meters)

0.50

0.00
[} 2000 2000 E000 8000 10000

Return Period [years)

Lastly, the magnitude of the model prediction was asked of the participants for 500,
5000, 50 000, and 500 000 years.

Now that the two models are known completely, it is possible to provide the exact results
for the different return periods. These results are shown in Table 2.5. Note that since the
Case 2 model uses an exponential, for long return periods, the magnitude can become
large — this model may not represent physical processes effectively but can provide a
challenge for modelling.

Table 2.5. Results for the two cases

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 1 1.9 24 2.9 34
Magnitude (metres) Case 2 0.78 2.2 28 2000
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3. Benchmark outcomes

3.1 Benchmark completion

To complete the benchmark exercise, the following four areas should be addressed:
1. Assumptions
2. Model detail results
3. Model adequacy assessment approach
4. Results of the assessment

While much of the effort spent in responding to this benchmark was on technical
analysis, it is important to understand key assumptions behind the modelling approach
and the ultimate use of the model for hazard representation. As part of an integrated risk
analysis, the hazard characterisation is a key element of effective modelling. Thus, any
supporting analyses need to be developed in context with consideration and
understanding of the scope, limitations, boundary conditions, complexity and contexts
that provide the foundation for the resulting statistical model. These types of
assumptions need to be clearly documented to understand how results will be used in
risk-informed decision making.

Submissions were provided for consideration by the following: Electricité de France
(EDF), the Finnish Meteorological Institute (FMI), the Idaho National Laboratory (INL),
Institut de Radioprotection et de Stireté Nucléaire (IRSN), and the Korea Atomic Energy
Research Institute (KAERI).

3.2 Submission by EDF

In its submission, EDF models the frequency-magnitude relation with a generalised
extreme value (GEV) distribution. It notes that, under some general hypotheses, the
annual extreme value of a process, once normalised, tends to a GEV distribution and the
return levels are specific quantiles of the annual extreme value distribution. The GEV
limit model makes it possible to estimate large return levels.

In Cases 1 and 2, the fitting is based on the minimisation of a criteria, defined as the
squared error, the weighted square error, the maximum error or the weighted maximum
error between the data and the model. For Case 1, EDF also used three-points
interpolation by solving a system of equations defined by the quantiles of GEV
distribution.

The EDF analysts noted it is possible to improve the precision of the GEV model on
large return periods by penalising the errors to give more importance in properly
predicting the magnitude associated to large return periods.

In Case 2c, the data are uncertain. EDF uses a GEV model that minimises random
features of the error focusing on either the mean or 95" quantile. Examples of analysis
results obtained with the L2 criteria are shown in Table 3.1. Instead, the models were
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used to compare against the data tables that were shown in Chapter 2. Plots of these
results are shown in Figure 3.1. The details of their analysis, including tables of
numerical results, are shown in Annex A.

Table 3.1. Results for EDF submission (example of L2 criteria results)

Return period (years) 500 5000 50 000 500 000
Case 1 1.85 2.35 2.85 3.35
Case 2a 0.78 2.40 14.6 105
Case 2b 0.79 2.41 14.3 102
Case 2¢ 0.79 2.41 14.25 101

Figure 3.1. EDF submission results plotted for the four cases
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3.3 Submission by the Finnish Meteorological Institute (FMI)

The FMI submitted a write-up and included the analysis files (in the R tool). All the
necessary steps to repeat the exercise (excluding setting up some parts of the R
environment) were provided in this notebook. The submission provides the theoretical
and technical background for the modelling approach and the assumptions. Then, the
results for fitting the selected statistical models are presented for each test case together
with an analysis of potential uncertainties.

The model used by FMI is the GEV. They use a Bayesian approach (using a couple of
numerical approaches) to the estimation of the GEV parameters. One of the main
strengths in the Bayesian approach is that it provides a natural way to estimate both
parameter and observational uncertainties. The numerical results of the FMI analysis are
shown in 3.1 for Case 1 and 3.2 for Case 2.

Table 3.2. Case 1 results for FMI submission

Return period (years) 500 5000 50000 500000
Magnitude (metres) Case 1 Exact 1.9 2.4 2.9 34

FMI mean from the Approximate Bayesian Computation = 1.85 @ 2.35 2.84 3.34
approach magnitude (metres)

FMI mean from traditional Markov Chain Monte Carlo approach = 1.84 = 2.35 2.88 3.43

(metres)

Table 3.3. Case 2a results for FMI submission
Return period (years) 500 5000 50000 500000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000

FMI mean from the Approximate Bayesian Computation 0.76 = 2.33 16.62 = 148.36
approach magnitude (metres)

FMI mean from traditional Markov Chain Monte Carlo approach = 0.76 = 2.31 17.25 | 162.27

(metres)

Table 3.4. Case 2b results for FMI submission
Return period (years) 500 @ 5000 50000 500000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000

FMI mean from the Approximate Bayesian Computation 0.77 = 232 16.22 = 142.11
approach magnitude (metres)

FMI mean from traditional Markov Chain Monte Carlo approach = 0.76 | 2.30 16.90 = 156.36

(metres)

Table 3.5. Case 2¢ results for FMI submission
Return period (years) 500 @ 5000 50000 500000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000

FMI mean from the Approximate Bayesian Computation 0.78 = 2.28 1416 | 110.94
approach magnitude (metres)

FMI mean from traditional Markov Chain Monte Carlo approach = 0.77 | 2.36 16.95 = 151.60
(metres)
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3.4 Submission by Idaho National Laboratory

Two independent groups at the INL provided results. The first group used a Bayesian
approach for a GEV model, using the OpenBUGS analysis tool. The second group used
a regression approach. Specifically, the second group used linear regression with
transformed form model to fit the magnitude vs. return period relationship model for
Case 1 and non-linear regression for Case 2.

INL Group 1

Group 1 used a Bayesian approach with the GEV model to quantify both Case 1 and 2.
The tool used was OpenBUGS. An example of the script used for Case 1 is shown in
Table 3.6. The predicted results for Case 1 are shown in Table 3.7. The results for Case
2 are shown in Table 3.8 (Case 2a), Table 3.9 (Case 2b), and Table 3.10 (Case 2c).

Table 3.6. OpenBUGS script for Case 1 from INL Group 1 submission

model

{ for(iin 1:N) {

z.p[i] ~ dnorm(mean][i],prec)

y-p[i] <- -log(1 - p[i])

mean[i]<- mu - sigma/xi*(1 -pow(y.p[i],-x1))
}
mu ~ dnorm(0,0.0001)
prec<-pow(sd,-2)
sd~dunif(0,10)

xi ~ dunif(-1,1)

sigma ~ dunif(0,10)

}
data

list(p=c(0.632, 0.393, 0.181, 0.0952, 0.0198, 0.00995, 0.002, 0.001, 0.0005, 0.0002, 0.0001, 0.00002,
0.000002),

z.p=c(0.50, 0.65, 0.85, 1.0, 1.4, 1.5, 1.9, 2.0, 2.2, NA, 2.5, NA, NA), N=13)

list(mu=1.0, sigma=1.0, xi=1.0)

Table 3.7. Case 1 results for INL Group 1 submission

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 1 Exact 1.9 24 2.9 34
INL mean (metres) 1.88 2.37 2.84 3.31

Table 3.8. Case 2a results for INL Group 1 submission

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000
INL mean (metres) 0.76 2.34 16.02 136.20

Table 3.9. Case 2b results for INL Group 1 submission

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000
INL mean (metres) 0.76 2.32 16.26 142.80
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Table 3.10. Case 2c results for INL Group 1 submission

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000
INL mean (metres) 0.76 2.34 16.02 136.20
INL Group 2

The hazard frequency/magnitude model here for Case 1 fit the linear regression model
with log transformation of the return period to describe the relationship between
magnitude and return period since the synthetic model provided is linear. The difference
is the residual term in regression equation, which is the vector values of the differences
between observed values and predicted values:

Magnitude, = B, + Bilog(return period,) + ¢;
The estimated equation is:
Magnitude, = 0.503364 + 0.506251 = log(return period,)

The estimated values above are the least square estimates of the intercept and slope. They
have standard error for the intercept and slope are 0.07006 and 0.03083, respectively.
The predicted results are shown in Table 3.11 for Case 1, Table 3.12 for Case 2a, Table
3.12 for Case 2b, and Table 3.14 for Case 2c.

Table 3.11. Case 1 results for INL Group 2 submission

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 1 Exact 1.9 2.4 2.9 34
INL mean (metres) 1.87 2.38 2.88 3.39

Table 3.12. Case 2a results for INL Group 2 submission

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000
INL mean (metres) 0.75 2.32 14.83 37.18

Table 3.13. Case 2b results for INL Group 2 submission

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000
INL mean (metres) 0.75 2.28 17.57 170.46

Table 3.14. Case 2c¢ results for INL Group 2 submission

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000
INL mean (metres) 0.71 2.01 13.75 37.09

Group 2 noted that principal component regression has a few technical limitations and
uncertainties. First, the uncertainty of mean for short time interval was not provided,
even though the unknown standard deviation of each mean magnitude is small. To
estimate the standard deviation, the 5% and 95™ percentile of the mean magnitude, an
imputation must be utilised which produced some uncertainty on those imputed values.
Compared with the results estimation obtained from Case 2a, we noticed that the
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confidence and prediction intervals for Case 2¢ are all wider than those for Case 2a.
Model fitting also does not perform well when there is a long time return period so that
the predicted values do not fall into the 95% confidence interval. Lastly, the principal
component regression model could not meet the expected condition that the mean
magnitude keeps increasing as the return period increases.

3.5 Submission by IRSN

The IRSN submitted its analyses for Case 1, Case 2(a) and Case 2(b) in a write-up that
included the analysis files (using the R language).

For Case 1, a set of 100 return periods was first randomly sampled. Then, associated
magnitudes were calculated using the synthetic model. Finally, extreme frequency
estimations were performed.

The analyst implemented an annual maxima (AM) frequency model in which the
distribution of the extreme events converges to a GEV one. The IRSN noticed that the
GEYV distribution can have the form of the synthetic model only if the shape parameter
of the distribution is equal to -1 and the scale parameter is negative. With such
conditions, the theoretical upper tail can only be finite and bounded and the GEV
distribution cannot be used with a negative scale parameter: thus it was not used to
describe the frequency/magnitude relationship for Case 1.

The analyst implemented a Peaks-Over-Threshold (POT) frequency model in which the
distribution of the exceedances over the threshold converge to an exponential one
(Generalised Pareto Distribution, or GPD). The choice of the threshold value is based on
using the synthetic model. The Renext R library (developed by the IRSN and Alpestat)
was used for the frequency estimations. The relative difference in estimated magnitudes
does not exceed 5%, and all the plotting positions are inside the one sigma confidence
interval even though the latter is very narrow (see Figure 3.2).

Figure 3.2. Fitting of the SM-Casel data sets (w=100 years) with GPD distribution

The exceedances over the threshold follow an Exponential distribution
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Table 3.15. Case 1 results for IRSN submission

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 1 Exact 1.9 24 2.9 34
GPD/Exp IRSN mean (metres) 1.78 2.25 2.72 3.19

For both Cases 2a and 2b, non-linear least-squares estimates of the GEV parameters
were performed. As shown in Figure 3.3, the fitting with confidence intervals is quite

good with heavy tails (very high shape parametergzo-96 ) up to some thousands of

years. For longer return periods the fitting is off the curve, perhaps because the proposed
cases ignore any physical limits.

Figure 3.3. To the left: Fitting Case2-a synthetic data with a GEV distribution; to the right: Fitting
Case2a synthetic data with a GEV distribution

Case 2a: Fitting with a GEV distribution Case 2b: Fitting with a GEV distribution
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Table 3.16. Case 2a results for IRSN submission
Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000
GEV IRSN mean (metres) 0.75 2.32 16.79 150.34
Table 3.17. Case 2b results for IRSN submission
Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000
GEV IRSN mean (metres) 0.76 2.31 16.50 146.53

3.6 Submission by KAERI

As a result of fitting the relationship between magnitude and return period in Case 1 and
Case 2, the relationship was estimated in log and linear regression. The data fitting is
high in R? but with a square error. The reason is sensitive to the coefficients of the
synthetic model. Therefore, further parameter analysis is required. The regression
equation of this study is as shown in the following equations (1) to (2).

For Case 1: M = A *In (x) + B (Parameters A and B) (1)
For Case 2: M = A * (x) + B (Parameters A and B) 2)
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To minimise the square error of parameters A and B, an optimisation method is applied
through the square error solver function. As a result, the estimated parameters A and B
for Case 1 and Case 2 are shown in the following equations (3) and (4).

For Case 1: M = 0.219861834 * In (x) + 0.503363549 (Minimize square error)
3)
For Case 2: M = 0.000344252 * (x) + 0.565051348 (Minimize square error) (4)

The predicted results for Casel and Case2 are shown in Table 3.17 and 3.18. In addition,
the re-fitted graph was compared with the existing data and displayed, as shown in Figure
3.4 to Figure 3.5.

Table 3.18. Case 1 results for KAERI submission

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 1 Exact 1.9 2.4 2.9 34
Log KAERI mean (metres) 1.870 2.376 2.883 3.389
Optimisation KAERI mean (metres) 1.870 2.376 2.882 3.388

Table 3.19. Case 2 results for KAERI submission

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000

Linear KAERI mean (metres) 0.715 2.065 15.565 150.565
Optimisation KAERI mean (metres) 0.737 2.286 17.778 172.691
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Figure 3.4. KAERI submission results plotted for Case 1

-Case 1-

— -8
3 _.-.-d‘_;_'_.a--':""""
4
r
- .
o
E O O OGriglan
:: ————— Or|g|na1_|..
8 ? Log_F
£ — Optimization_F
4 4 A A A Prediction M
] g
A
1 ﬁ
{
[4]
-‘
0 I I | I I 1 1
0 100000 200000 300000 400000 500000

Return period (years)

BENCHMARK ON EXTERNAL EVENTS HAZARD FREQUENCY AND MAGNITUDE STATISTICAL MODELLING



32 | NEA/CSNI/R(2021)10

Figure 3.5. KAERI submission results plotted for Case 2
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4. Observations

This benchmark provided an exercise focused on the quantitative technical analysis steps
and processes used to assess hazard frequency and magnitude for external events risk
assessments. The research provided details (data and overall objectives) for two unique
benchmarking exercises specific to external events hazard frequency and magnitude
modelling by providing synthetic data for a hypothetical external event (precipitation,
extreme temperatures, high winds, etc.) to be determined by the participants. The
information and results provided by benchmark participants were collected and
summarised to gain insights on best practices from the activity.

4.1 Case 1 observations
Figure 4.1 shows the overall results of all participants for Case 1. As can be seen in the

figure, the results tended to track well with the exact results and were consistent across
all groups. The numerical values used for Figure 4.1 are listed in Table 4.1.

Figure 4.1. Comparison of all submission results for Case 1
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Table 4.1. Case 1 results for all group submissions

Result 1 2 5 10 50 100 500 1000 2000 5000 10000 50000 500000
Exact | 050 065 085 1.00 135 150 185 200 | 215 @ 235 2.50 2.85 3.35
EDF 058 083 099 135 150 185 200 215 @ 235 2.50 2.85 3.35
FMI 1.84 2.35 2.88 3.43
INL1 049 065 086 102 137 153 188 203 @ 217 | 237 2.51 2.84 3.31
INL2 050 066 086 101 136 152 187 202 @217 | 238 2.53 2.88 3.39
IRSN 0.50 0.90 142 | 1.78 2.25 2.72 3.19
KAERI | 0.50 066 086  1.01 136 152 187 202 218 & 238 2.53 2.88 3.39

Note: EDF = Electricité de France (example of results obtained with the L2 criteria), FMI = Finnish
Meteorological Institute, INL1 = Idaho National Laboratory Group 1, INL2 = Idaho National Laboratory
Group 2, IRSN = Institut de Radioprotection et de Sureté Nucléaire, KAERI = Korea Atomic Energy
Research Institute.

The approach and models used by the different groups ranged from curve fitting logarithm models to
performing Markov Chain Monte Carlo (MCMC) calculations using the GEV model. For Case 1, five of the
groups used a regression-based approach while two used a MCMC calculation.

4.2 Case 2 observations

The study for Case 2 was much more complicated since the underlying model was not
provided. A summary of the numerical predictions that were provided by the submitters
is shown in Table 4.2. As can be seen in the table, the predictions for long periods of
time (> 10 000 years) started to become problematic due to the underlying synthetic
model (based upon an exponential function that was proposed as a strong challenge).

Table 4.2. Case 2 results for all group submissions

Return period (years)

Result Case 500 5000 50 000 500 000
Exact 0.78 2.20 28.0 2000
EDF 2a 0.78 2.40 14.6 105
2b 0.79 2.41 14.3 102
2c 0.79 2.41 14.25 101
FMI 2a 0.76 2.31 17.3 162
2b 0.76 2.30 16.9 156
2c 0.77 2.36 17.0 152
INL1 2a 0.76 2.34 16.0 136
2b 0.76 2.32 16.3 143
2c 0.76 2.34 16.0 136
INL2 2a 0.75 2.32 14.8 37
2b 0.75 2.28 17.6 170
2c 0.71 2.01 13.8 37
IRSN 2a 0.75 2.32 16.8 150
2b 0.76 2.31 16.5 147
2c

Note: EDF example of results obtained with the L2 criteria

Focusing on just the 50 000-year magnitude predictions (see Figure 4.2), it is possible to
see that the predictions were consistent, but too low by about 40%. Again, this under
prediction is likely a result of the use of the exponential function for the underlying
synthetic model for Case 2. While the models used by the submitters (e.g. GEV,
Generalised Pareto, regression) can represent exponential types of behaviour, the data
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that was provided may represent too short of a period to reliably predict very long return
periods (i.e. for periods of time much longer than the data set provided). In Case 2, the
“longest” data point provided was for 10 000 years, or five time shorter than the
50 000-year prediction.

Case 2b represented the situation where additional data was provided (over that provided
by Case 2a) — 26 data points were provided instead of the original ten. However, in both
cases, the longest time period represented was 10 000 years. Looking at the 50 000-year
predictions, we can see that increasing the data points (from 10 to 26) resulted in only
slightly better predictions (but they were still low by approximately 40%). It appears that
having additional data within the seen time did not lead to much of an improvement in
the predictions. Alternatively, if we had provided “paleo-data” for a period longer than
10 000 years, this data would have likely resulted in better predictions. This aspect of
the analysis might be considered for future benchmark exercises.

Figure 4.2. Comparison of all submission results for Case 2 for the 50 000 year predictions

50,000 Year Return Period Predictions

30.0

25.0
w
£ 200
E
E 15.0
S 100
1]
=

50

2a 2b 2¢ 2a 2b 2¢ 23 2b 2¢ 2a 2b 2¢ | 2a 2b 2c
Exact EdF FMI INL1 INL2 IRSN

The participants that submitted information for Case 2 used two basic approaches to the
analysis, Bayesian analysis via MCMC or regression to a curve. It appears that the
quantity of data and the quantification had little impact on the results shown in
Figure 4.2. However, it did appear that the Bayesian approach was able to quantify the
uncertainty on the predictions in a straight-forward fashion (for example, the estimate
for the INL1 2c result was a mean of 16 m with a 5™ percentile of 14 m and a 95"
percentile of 17 m for the 50 000-year return period).

When we look at the 500 000-year magnitude predictions, we can see that the predictions
were consistent, but very low. This under prediction is (again) likely a result of the use
of the exponential function for the underlying synthetic model for Case 2. Note that the
use of an exponential function was chosen as a challenging case and most likely does
not represent any real physical phenomena.
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However, a concern here would be if return periods much greater than what has been
experienced (> 10 times the time period) were being predicted and the underlying
phenomena that drive the magnitude of the external hazard is unbounded upward like an
exponential function. In that case, the predictions for the hazard may be underestimated.
Fortunately, most (if not all) natural external hazards would have upper bounds to the
magnitude — it would not make sense to assume infinitely large floods, temperatures,
rain, snow, earthquakes, etc.

The difficulty in the predictions for long return periods does indicate that knowledge of
the underlying phenomena or knowledge of upper bounds (e.g. physical limits) could
help to greatly improve the predictions. This aspect of the analysis might be considered
for future benchmark exercises.
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5. Conclusions

This benchmark study provided a mechanism to develop statistics-based approaches for
representing complex physical phenomena such as extreme temperatures, droughts, high
winds, floods and extreme snowfall. The benchmark provided the overall objectives of
the study, the data to be investigated and the expectations for results reporting.

This report provided two independent benchmark cases to facilitate understanding of
statistical modelling that may be used in quantitative technical analysis to assess hazard
frequency and magnitude for external events risk assessment:

e Case 1: Based on a data set with a given associated synthetic model (i.e. known
function form).

e Case 2: Based on a data set generated from another associated synthetic model
that is not given (i.e. a “blind study”).

Participants were asked to provide any key assumptions, the statistical model(s) used,
the overall results of the analysis, and the process used to assess the adequacy of the
model(s), including uncertainties. The provided data were created using synthetic
models for a hypothetical external event (e.g. precipitation, extreme temperatures and
high winds). As such, the data used in this benchmark may not be representable for any
real physical phenomenon and are solely intended to test different modelling approaches.

One of the findings of this benchmark study is that different statistical approaches, such
as regression or probability distribution model application, can provide reasonable
hazard frequency and magnitude estimation for time periods where data exist (i.e.
interpolation) for both cases. However, the benchmark study did identify potential
issues:

e Predictions for long return periods (much greater than the existing data time
collection) can prove challenging for some types of data sets.

e Rather than focusing on predicting a magnitude for a particular hazard, an
alternative approach might be to evaluate the probability of exceeding a critical
level in a future time interval.

e If an underlying physical phenomenon that drives an external hazard is
unbounded (e.g. like the exponential function used in Case 2), predictions for the
hazard may be underestimated.

e Some participants had a process to quantify uncertainties. However, capturing
the uncertainties in the predictions was not typically performed.

While issues and challenges do exist in statistical modelling of hazards, this study
pointed to potential improvements in hazard modelling processes. It is recommended
that the following items be considered for future WGEV activities:
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e The availability of statistical open-source tools and frameworks offers the
potential for standardised approaches for representing the frequency/magnitude
of hazards applicable to risk applications.

e  While not part of this benchmark, having knowledge of the underlying hazard
phenomena could improve the predictions made from models. For example, the
availability of a maximum upper bound (e.g. a physical limit) could help to
greatly improve long-term predictions.

e The use of “paleo-data” for a period longer than that recorded in actual data sets
could have resulted in better predictions from the statistical models. The
availability of this type of data, though, is not well understood for some types of
hazards.

e Uncertainties inherent in hazard model predictions should be better understood
and quantified as a part of validation.
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Annex A. Submission by EDF

Executive summary

The modelling of external hazards encompasses different technical aspects, depending on
the type of hazard. All these hazards impact nuclear installations. Usually, a specific risk
analysis is performed for a given hazard to inform a decision. A risk analysis contains a set
of scenarios, frequencies and associated consequences. A scenario is a sequence that
contains an initiating event and one or more subsequent events. The end state (a
consequence) of a scenario is also of interest.

The global objective of the benchmark study launched by the OECD NEA, is to focus on
an initiating event induced by an external hazard. The statistical modelling of a hazard
frequency and magnitude is of particular interest in this benchmark.

The benchmark study provides synthetic data for a hypothetical external event.
Hypothetical data describing the external hazard comes from synthetic models. These data
have been generated with a computer code. Two cases are described:

e Case 1: a fully revealed open case where both the synthetic data and the synthetic
model producing the data are provided;

e (ase 2: a blind-test case where only the synthetic data are provided.

In this report, we model the frequency-magnitude relation with a GEV distribution.
Indeed, under some general hypotheses, the annual extreme value of a process, once
normalised, tends to a GEV distribution. Furthermore, the return levels are specific
quantiles of the annual extreme value distribution. The GEV limit model makes it
possible to estimate large return levels.

To fit the GEV model that best predicts the given synthetic model or the given
synthetic data, we used several criteria:

e the minimum of the squared error between the data and the model;
e the maximum error over a large range of the return period.

In addition, for Case 1, we used a three-points interpolation by solving a system of
equations defined by the quantiles of GEV distribution. We voluntarily present this
method only in Case 1 but it can be applied on the other cases without uncertainty.

It is possible to improve the precision of the GEV model on large return periods. To
this end, we penalise the errors to give more importance to properly predicting the
magnitude associated with large return periods.

If the data are uncertain, we define a GEV model that minimises random features of
the error: the mean or its quantile of order 95%.

For each case, we present the relative error and the optimal set of parameters of the
GEV model.
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Figure A1.1 draws the T -return level obtained with the optimal GEV distribution in each

case.

Table Al.1 to Table A1.4 detail the reference magnitudes and the approximated ones,
obtained using several error criteria.

Figure Al.1. Frequency - Magnitude obtained with the optimal GEV distribution (in blue, red and green)
that best predicts the known model or the synthetic data (in black) with respect to several error criteria

Case 1

Magrtude = [25.1.5.2.21
T= 107, 100, 2000]

— M interp
e
w' - w 1 o'
T
Case Ib
A0 == Ly #
— wegt L e
1% Lower !
== wegh e Ls e
18 *  gven warele |
3
28
i3
19
L]
o H & w o

Caze 2a
LY-E
—_— wegied [, e
i L1 = Ly @
wagled L, 0
1] * Gt aToe
1%
FL]
13
e
P e
0 1w L 1w o
Cas 2¢
™
| SR W
w 1w ! 1.3 1w

BENCHMARK ON EXTERNAL EVENTS HAZARD FREQUENCY AND MAGNITUDE STATISTICAL MODELLING



42 | NEA/CSNI/R(2021)10

Table Al.1. Case 1: Comparison between the known model g and the optimal GEV model obtained using
several error criteria

Return 2 5 10 50 100 500 1000 2000 10 000

period

(years)

Ref 0.650 0.849 1.0 1.349 1.5 1.849 2.0 2.151 25

Mag

(m)

Approx 0.582 0.828 0.99 1.349 1.5 1.85 2.0 2.151 25

Mag

(m) -

3p

interp

Approx 0.600 0.841 1.0 1.353 1.503 1.850 2.0 2.150 2.50

Mag

(m) -

Lo-

error

Approx 0.724 0.901 1.02 1.31 144 1.75 1.90 2.04 240

Mag

(m) -

Ls-

error

Table A1.2. Case 2a: Comparison between the given synthetic data and the optimal GEV model obtained

using several error criteria

Return
period
(years)

2 5 10 50 100 500 1000 3000 10000

Ref Mag
(m)
Approx
Mag (m) -
L2-error
Approx
Mag (m) -
weighted
L2-error
Approx
Mag (m) -
L8-error
Approx
Mag (m) -
weighted
L8-error

0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 40

0.523 0.526 0.530 0.556 0.584 0.776 0.986 1.730 3.959

0.505 0.507 0.511 0.537 0.566 0.759 0.971 1.719 3.969

0.479 0.482 0.486 0.511 0.540 0.732 0.942 1.685 3.915

0.445 0.448 0.452 0.478 0.507 0.701 0.914 1.669 3.940
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Table A1.3. Case 2b: Comparison between the given synthetic data and the optimal GEV model using the
L2-error, using several error criteria

Return 2 5 10 50 100 500 1 000 3 000 10 000
Period
(years)

Ref Mag 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0
(m)

Approx 0.543 0.546 0.550 0.576 0.604 0.795 1.00 1.741 3.952
Mag (m)

- L2-

error

Approx 0.538 0.541 0.545 0.571 0.599 0.790 1.00 1.74 3.96
Mag (m)

weighted

L2-error

Approx 0479 0.482 0.486 0.512 0.540 0.732 0.942 1.685 3.916
Mag (m)

18-

error

Approx 0.448 0.451 0.455 0.481 0.510 0.704 0.917 1.67 3.94
Mag (m)

weighted

L8-error

Return 15 20 25 30 40 60 70 80 90
Period

(years)

Ref Mag 0.56 0.56 0.57 0.57 0.58 0.60 0.60 0.61 0.62
(m)

Approx 0.554 0.557 0.560 0.564 0.570 0.582 0.587 0.593 0.599
Mag (m)

SL2-

error

Approx 0.548 0.552 0.555 0.558 0.564 0.576 0.582 0.588 0.593
Mag (m)

weighted

L2-error

Approx 0.489 0.493 0.496 0.499 0.506 0.518 0.523 0.529 0.535
Mag (m)

18-

error

Approx 0.459 0.462 0.465 0.469 0.475 0.487 0.493 0.499 0.504
Mag (m)

weighted

L8-error

Return 125 150 175 200 300 400 750
Period

(years)

Ref Mag 0.63 0.65 0.66 0.67 0.7 0.75 0.87
(m)

Approx 0.618 0.631 0.643 0.656 0.704 0.750 0.902
Mag (m)

SL2-

error
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Table A1.3. Case 2b: Comparison between the given synthetic data and the optimal GEV model using the
L2-error, using several error criteria (Continued)

Return 2 5 10 50 100 500 1000 3 000 10 000
Period
(years)

Approx 0.612 0.626 0.638 0.651 0.699 0.745 0.897
Mag (m)

weighted

L2-error

Approx 0.554 0.567 0.580 0.592 0.641 0.687 0.840
Mag (m)

-L8-

error

Approx 0.523 0.537 0.550 0.562 0.611 0.658 0.813
Mag (m)

weighted
L8-error

Table Al.4. Case 2¢: Comparison between the given synthetic data and the optimal GEV model
minimising several features of the random error

Return 2 5 10 50 100 500 1000 3000 10 000
Period
(years)

Ref 0.53 0.54 0.55 0.59 0.62 0.79 0.95 16 4.0
Mag

(mean)

(m)

Approx 0.525 0.527 0.531 0.558 0.587 0.781 0.993 1.73 3.94
Mag (m)

- Mean

Approx 0.517 0.519 0.523 0.551 0.581 0.778 0.994 1.75 3.98
Mag (m)

Quantile

95%
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Al.1 Introduction

Al.1.1. The OECD context

The modelling of external hazards encompasses different technical aspects depending on
the type of hazard, all of them impacting nuclear installations. There is also a link
between the hazard and the associated risk analysis. A risk analysis contains a set of
scenarios, frequencies and associated consequences, developed in such a way as to
inform decisions. A scenario contains an initiating event and (usually) one or more
subsequent events leading to an end state that reflects the issue of concern.

The objective of the benchmark study launched by the OECD NEA is to focus on the IE
by facilitating an exercise on the statistical modelling for assessing hazard frequency and
magnitude for external event risk assessment. The benchmark study provides synthetic
data for a hypothetical external event.

The analysis steps and modelling results we obtained are detailed on this report.

We would like to underline that the scope of this benchmark differs from the activities
that EDF usually performs regarding extreme natural events characterisation. Indeed,
what is usually available is a set of measured data for a given phenomenon, and what is
performed is statistical extrapolation of these data to evaluate a magnitude of the natural
phenomenon for a high return level period.

Al.1.2. Data

Hypothetical observational data represent an external hazard which has been created
from synthetic models (this type of model is used to create synthetic data that have been
generated from a computer). Two cases are described:

e C(Case I: afully revealed open case where both the synthetic data and the synthetic
model producing the data are provided;

e (Case 2: a blind-test case where only the synthetic data are provided.

Case I - Known model producing the synthetic data
The synthetic model used for the first exercise is:
g: T —-9g(T)=0.5+0.5log1o(T) (1)

where T is the return period in years and M = g(T ) the associated magnitude given in
metres. This model led to the return period / magnitude detailed in Table A1.5.

Table A1.5. Case 1: synthetic data

. 2 5 10 50 100 500 1000 2000 10000
Return period (years)

Mag (m) 050 065 08 10 14 15 19 20 2.2 25

Case 2 - Unknown model producing the synthetic data

In this case, only the synthetic data are provided (the synthetic model used is not
provided). The Case 2 presents three subcategories:

BENCHMARK ON EXTERNAL EVENTS HAZARD FREQUENCY AND MAGNITUDE STATISTICAL MODELLING



46 | NEA/CSNI/R(2021)10

e On the first two, the synthetic data have no uncertainty and the last has
uncertainty estimates on some of the data.

e The three-point interpolation would also be applicable for the 2a case data set
(without uncertainty). In order to focus on presenting the differences between a
data set with and without uncertainties, we focused the Case 2 studies on the L

and Le-error models.

Case 2a: The synthetic data (ten data points) with no uncertainty on the points are
provided and gathered in Table A1.6.

Table A1.6. Case 2a: synthetic data

Return period (years) 5 10 50 100 500 1000 3000
10 000

Mag (m) ‘0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6
4.0

Case 2b: In addition to the synthetic data of Case 2a, 16 data points are provided without
uncertainty. The additional data are seven.

Table A1.7. Case 2b: additional synthetic data with respect to Case 2a

Return period (years) 15 20 25 30 40 60 70 80

Mag 056 05 057 057 058 060 060 0.61
Return period (years) 90 125 150 175 200 300 400 750
Mag (m) 062 063 065 066 067 071 075 087

Care: In Table Al.7, we changed the value given in Table 2.3 of the benchmark
(benchmark numeration). Case 2b: Comparison between the given synthetic data and the
optimal GEV model using the L2-error, using several error criteria of the benchmark
(benchmark numeration) at the period T =3 000 years from the value 1.57 to the value
1.6 and the value given in the benchmark at the period T = 10 000 years from the value
3.97 to the value 4.0, in order to make the data Table Al.7. Case 2b: Comparison
between the given synthetic data and the optimal GEV model using the L2-error, using
several error criteria (benchmark numeration) coherent with the data of Table A1.6. Case
2a: Comparison between the given synthetic data and the optimal GEV model obtained
using several error criteria (benchmark numeration).

Case 2c: Here, the synthetic data for long time intervals (500 years and longer) are
presumed to not be known exactly. For these return periods, the uncertainty on the
magnitude is provided. The other points (< 500 years) have no uncertainty on the

associated magnitude. The synthetic data (ten data points) are gathered in Table A1.8.

BENCHMARK ON EXTERNAL EVENTS HAZARD FREQUENCY AND MAGNITUDE STATISTICAL MODELLING



NEA/CSNI/R(2021)10 | 47

Table A1.8. Case 2c: known return levels and uncertain ones

Return period (years) |1 2 5 10 50 100 500 1000 3000 10000

Mean 053 053 054 055 059 062 079 09 16 4.0
St. dev. - - - - - - 004 006 015 046
q0.05 - - - - - - 072 08 13 3.2
q0.95 - - - - - - 085 1.1 1.8 4.7

We can note that the quantiles o.o5 and Qo.95 given in Table A1.11 correspond to those of
anormal distribution for which the mean and standard deviation are those given in the
table.

Thus, we will model the uncertainty by a normal distribution as follows:

Xs00 ~ Normal(u =0.79, 0= 0.04) 2)
X1000 ~Normal(u =0.95, 0 =0.06) 3)
X3000 ~ Normal(y=1.6, 0 =0.15) 4

X10000 ~ Normal(u = 4.0, 0 = 0.465) 5

We consider that these four random variables are independent.

Notations

Let us note Gg the cumulated density function of a GEV distribution para- metered by 0
= (4, 0, €). The Extreme Value Theory shows that the annual maximum of the
underlying process follows a GEV distribution.

The T -return level qe(T ) is by definition the quantile of order (1 — 1/T) of the GEV
distribution :
Go(qo(T) =1—1/T  (6)

The T -return level is evaluated from the relation:

pu
) Ve 1 /716 .
| ,u.——{l— —log(1 — 1/7)] } for € £ 0,
q6(1') = §
p—olog(—log(l—1/T)) for & = 0. o
In this report, we want to fit the GEV distribution that best predicts the return levels
given either by a known model (Case 1) or by some synthetic data (Case 2).
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Al.2 Case 1 - Know model producing the synthetic data

In Case 1, the model g that produced the synthetic data is given by (1).

The objective of the study is to find the optimal parameter 8 = (u, 0, £) so that the GEV
distribution parametered by 0 fits the best frequency-magnitude relation (1).

To find the optimal 0, we first considered a 3-points interpolation according to the relation
(37). Then, we consider a criteria to evaluate the model error between g and qg, noted

Err(g, qe) and we find @* defined by :

8" = arg;nin Err(g,qe)
®)
In our study, we tested different criteria evaluating the model error Err(g, qe):

o the Ly-error based criteria, which cumulates the errors at each return period T:
see Section A1.2.2;

e the L«-error based criteria, which focuses on the maximal error over the
return period T : see Section A.1.2.3.

Al.2.1. The 3-points interpolation

The GEV distribution being defined by three parameters, we consider a system based on
three equations as follows:

qo(T2) = Mo

{ qe(Th) = M,
qo(Ts) = My

where (T;, M;),_, , 5 represents the return period and its associated magnitude taken in
the Table A1.5.

To determine the parameter 8 =( u, o, £), solution of this system, the parameters x4 and o
are defined as a function of & : u = f! oy © and o = f 2 (rymp (©)- with f Land f?

known. Then, we reach the parameter &, solution of the equation f3 (T M) (&) =0, using

the Brent’s algorithm. Note that the functions £, f2 and f3 are presented in Annex A.
Once the optimal £* is obtained, we deduce pu* =f l(Ti, wp (%) and o= f 2 romp E)-

The optimal parameter with (T;, My),—; 5 3 ={(10 000, 2.5), (100, 1.5), (2 000, 2.2)} is:
8+ = (u*, 0%, &) = (0.502162,0.216915, — 1.1 - 10-6) (9)

These points were chosen because they lead to a better approximation after several tests
performed in the Annex A.

With é* near to 0, we can say that the hazard frequency-magnitude relation follows a
Gumbel distribution with parameters (u*, o*) = (0.502162, 0.216915).

Figure A1.2 draws the T -return level obtained with the optimal GEV distribution and
the model g.
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Table A1.9 details the T -return levels obtained with the optimal GEV for several periods
T and gives the relative error made for each of them (in %) defined by:

9(T) — qo(T) '
g9(T) (10)

Figure A1.3 draws the relative error function: T > &(T).

e(T) =100 x '

Table A1.9. Case 1: Comparison between the known model g and the optimal GEV model obtained with a
3-points interpolation (in %)

Return period (years) |2 5 10 50 100 500 1000 2000 10 000
Ref Mag (m) 0650 0.849 1.0 1.349 15 1849 2.0 2.151 25
Approx Mag (m) 0.582 0.828 0.99 1.349 1.5 185 2.0 2.151 25
&(T) 1058 257  97e1 6.94e2 0 268e-2 221e2 155e2 0

Al.2.2. L2-error

We define the error as the square of the L>-norm of (g — Qg). In other words, we consider
the integrated squared error at each point T between the model g(T ) and qe(T ):

Err*(g.q99) = llg — qall7, = L _ (9(T) — qo(T))* dT
' (11)

To compute the integration, we use the Gauss-Legendre algorithm to approximate the
integral with a finite sum of the integrand evaluated on some judicious points. Using the
TNC (Truncated Newton Constrained) optimisation algorithm with 100 different starting
points, we obtain the following optimal point:

0+ =(u*, 0%, £¥)=(0.522748,0.211424,0.0032985)  (12)
The associated error is: Errs =0.1356

As the 3-points interpolation, the hazard frequency-magnitude relation is defined
following the Gumbel distribution with parameters 8* = (u*, o*) = (0.522748,
0.211424).
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Figure A.1.2. Case 1: Frequency - Magnitude relation obtained with the optimal GEV distribution (in
green) that best predicts the known model g (in black) with 3 points: in natural scale (left) and in logscale
(right). Zoom on the interval [1, 100] years on the first line.

Case 1 - 3 points interpolation Case 1 - 3 poinks interpolation
L6
1.4
12
19
= 0.8
a6+
0.4
/
4.2 —— given mode 0.2 4 —— given mode
— 3pinterp — 3pinterp
0.0 0.0 +
0 40 60 B0 100 10* 10t plig
T T
Case 1 - 3 points interpolation Case 1 - 3 points interpolation
15 E——— 2.5+
Magnitude = [2.5,1.5,2.2]
] T [104,200,2000] =
2.0 Mapndude = [2.5.1.5.2.21
T=[10%, 100, 2000]
15
- =
1.0
a5
— given moge 4 —— glven mode
— Jpinterp — 3pinierp
.0 : I 1 ! 0.0 : - 1
D 2000 400D EBO0 BDOO 10000 0% 108 bl 10t Lo
T T

Figure A1.3. Case 1: Relative error between the optimal GEV distribution and the given model g.

Case 1 - 3 points interpolation: relative error

Magnitude = [2.5,1.5,2.2]
10* T =[10% 100, 2000]

107 15’ 16" l:ll’ 10*

optimisation algorithm with 100 different starting points, we obtain the following
optimal point:
0% =(u*, 0%, E)=(0.522748,0.211424,0.0032985)  (12)

The associated error is: Err+ =0.1356
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As the 3-points interpolation, the hazard frequency-magnitude relation is defined
following the Gumbel distribution with parameters @* = (u*, o*) = (0.522748,
0.211424).

Figure A1.4 draws the T -return level obtained with the optimal GEV distribution and
the model g.

Table A1.5 details the T -return levels obtained with the optimal GEV for several periods
T and the relative éror made for each of them (in %).

Figure A1.6 draws the relative error function: T — &(T ).

Figure A1.4. Case 1 Frequency - Magnitude relation obtained with the optimal GEV distribution (in red)
that best predicts the known model g (in black) with respect to the L2-error: in natural scale (left) and in
logscale (right). Zoom on the interval [1, 100] years on the first lines.
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Table A1.10. Case 1: Comparison between the known model g and the optimal GEV model obtained with the

relative L2-error (in %)

Return period (years) | 2 5 10 50 100 500 1000 | 2000 | 10000
Ref Mag (m) 0.650 | 0.849 1.0 1349 15 1849 | 20 2151 | 25
Approx Mag (m) 0.600 0841 1.0 1353 1503 1850 20 2150 2,50
e(T) 772 104  30e-2  264e-1 1831 28362 6433 2292  3.74e3
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Figure A1.5. Case 1: Relative L2-error between the optimal GEV distribution and the given model g.

Case 1 - Relative Error : Ly

101 E
107 4
- \ T
10-1 4 ',l.'/ —
g 107 R GE—
- | |: 1
10-? o |
107 5 I
10-5 o
10-*
10° 10! 107 10? 10%

Al.2.3. Le-error

We define the error as the Lo-norm of (g — Qe). In other words, we consider the
maximum absolute error between g(T ) and qe(T ) :

Err(g,q0) = |9 — g8/ = max |g(T) — qo(T)|
(13)

To solve the optimisation problem, we use the Cobyla algorithm initialised with the
optimal point obtained with the L»-error.

We obtain the following optimal point:
B+ = (u*, 0%, &) = (0.668508, 0.149587, 0.0484294) (14)

The associated error is:

Err<=0.107711

Figure A1.6 draws the T -return level obtained with the optimal GEV distribution and
the model g.

Table details the T -return level obtained with the optimal GEV for several periods T
and gives the relative error made for each of them (in %) defined by (10).

Figure A1.7 draws the relative error function: T — &(T ).
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Figure A1.6. Case 1: Frequency - Magnitude relation obtained with the optimal GEV distribution (in red)
that best predicts the known model g (in black) with respect to the Loo-error: in natural scale (left) and in
logscale (right). Zoom on the interval [1, 100] years on the first line.
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Figure A1.7. Case 1: Relative Loo-error between the optimal GEV distribution and the given model g
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Table A1.11. Case 1: Comparison between the known model g and the optimal GEV model obtained with
the Loo-relative error (in %)

Return period (years) 2 5 10 50 100 500 1000 2000 10000
Ref Mag (m) 0.650  0.849 1.0 1.349 15 1849 | 20 2.151 25
Approx Mag (m) 0.724  0.901 1.02 | 1.31 144 175 1.90 2.04 2.40
e(T) 11.3 6.09 241 | 285 405 | 522 5.22 5.0 3.81

Al.2.4. Models comparison

In order to ease comparison, Figure A1.8 draws both models obtained with 3-points
interpolation and with both criteria’s (11) and (13).

Figure A1.8. Case 1: Frequency - Magnitude obtained with the optimal GEV distribution (in blue, red and
green) that best predicts the known model g (in black) with respect to the L2-error (in blue), the Loo-error
(in red) and with 3-points interpolation (in green): in natural scale (left) and in logscale (right).
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A1.3 Case 2 - Unknown model producing the synthetic data

For Case 2, the synthetic data is provided without the associated model.

AlL.3.1. Case 2a
In Case 2a, we use the synthetic data of Table Al.6.

Al.3.1.1. L2-error

We define the following error criteria:

s 10
(15) Errz(Sa,Q):Z(sz —a0(T3))°
i=1

where Sq = (T}, X71,)1<i<10 are the synthetic data of Table A1.6, with T; the return period

and xr; the associated magnitude.

Using the TNC optimisation algorithm with 100 different starting points, we got the
following optimal point:

0*=(u*,0*,£%)=(0.522859,0.001,0.868784) (16)
The associated error is:
Errx =0.1517

Figure A1.9 draws the T -return level obtained with the optimal GEV distribution and
the sample S..

Figure A1.9. Case 2a: Frequency - Magnitude relation obtained with the optimal GEV model (in blue)
that best predicts the given synthetic data (in black) with respect to the L2-error: in natural scale (left)
and in logscale (right).
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Table details the T -return level obtained with the optimal GEV for several return
periods T and gives the relative error made for each of them (in %) defined by:
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o, — qe(T})
T,

e(T;) = 100 x

(17)

Table A1.12. Case 2a: Comparison between the given synthetic data and the optimal GEV model using the

L2-error, with the relative error in %.

Return Period (years) 2 5 10 50 100 500 1000 | 3000 10 000
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0
Approx Mag (m) 0523 0526 | 0530 | 0556 | 0.584 | 0776 | 0986  1.730 | 3.959
e(T) 1.27 2.60 3.66 5.79 5.75 1.76 3.84 8.08 1.03

Al.3.1.2. Weighted L2-error

In order to force a best adequation over the large return periods, we consider the
weighted least square error defined by:

10
Err*(Sa,qe) = Y _log(Ti)(ar, — qe(T1)?  (18)
=1

where Sq = (T;, X1,)1<i<10 are the synthetic data of Table A1.6, with T; the return period
and Xr, the associated magnitude.

Using this weighted error, we penalise the errors on large return periods, considering,
for example, that we prefer getting a model that predicts better return levels associated
to large return periods even if the model works worse on low return periods.

Using the TNC optimisation algorithm with 100 different starting points, we obtain the
following optimal point:

6+ =(u*, 0%, E¥)=(0.504188,0.001,0.869813) (19)
The associated error is:
Err =0.4018

Figure A1.10 draws the T -return level obtained with the optimal GEV distribution and
the sample Se.
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Figure A1.10. Case 2a: Frequency - Magnitude relation obtained with the optimal GEV model (in red)
that best predicts the given synthetic data (in black) with respect to the weighted L2-error: in natural

scale (left) and in logscale (right)
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Table A1.13 details the T -return level obtained with the optimal GEV for several periods
T and gives the relative error made for each of them (in %) defined by (17). We verify
that although the global error is larger, the optimal GEV distribution fits better the data
for periods larger than 500 years.

Table A1.13. Case 2a: Comparison between the given synthetic data and the optimal GEV model using the

weighted L2-error, with the relative error (%).

Return Period (years) 2 5 10 50 100 500 1000 3000 10000
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0
Approx Mag (m) 0.505 | 0.507 @ 0.511 0.537 | 0566 | 0.759 | 0.971 1719 3.969
e(T) 4.79 6.06 7.06 8.94 8.73 3.95 217 7.44 0.78
Al.3.1.3. Lo-error
We define the following error criteria:
Err(Sq, go) = max |x1,— qo(T5)| (20)

where S, = (T;, Xr;)1<i<10 are the synthetic data of Table A1.6, with T; the return period
and xr, the associated magnitude.

Using the TNC optimisation algorithm with the optimal point obtained with the L>-error
as a starting point, we obtain the following optimal point:

0+ = (u*, 0%, £*)=(0.478532,0.00100012, 0.868792)  (21)

The associated error is : Err< =0.0851144

Figure A1.11 draws the T -return level obtained from the optimal GEV distribution and
the sample S..

Table Al.14 details the T -return level obtained from the optimal GEV for several
periods T and gives the relative error made for each of them (in %).
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Figure A1.11. Case 2a: Frequency - Magnitude relation obtained with the optimal GEV model (in blue)
that best predicts the given synthetic data (in black) with respect to the Loo-error: in natural scale (left)
and in logscale (right).
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Table Al.14. Case 2a: Comparison between the given synthetic data and the optimal GEV model using the
Loo-error, with the relative error (%).

Return Period (years) 2 5 10 50 100 500 1000 3000 | 10000
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0
Approx Mag (m) 0479 | 0482 | 048 | 0511 | 0540 | 0732 @ 0.942 1685 | 3.915
e(T) 9.63 10.8 11.7 13.3 12.9 7.36 8.12e-1 532 | 212

Al.3.1.4. Weighted L «-error

In order to force a best adequation over the large return periods T, we consider the
weighted error defined by

Err(Sq, qo) = max |log(Ty)[xr;,— qe(T2)]l  (22)

where Su = (T, X71,)1<i<10 are the synthetic data of Table 1.2, with T; the return period
and Xr, the associated magnitude.
Using this weighted error, we penalise the errors on large T, considering, for example,

that we prefer getting a model that predicts better large return levels even if the model
works worse on little return levels.

Using the TNC optimisation algorithm with the optimal point obtained with the L>-error
as starting point, we obtain the following optimal point:

0+ =(u*, 0%, £)=(0.44483,0.001,0.870939) (23)

The associated error is: Err< = 0.553827

Figure A1.12 draws the T -return level obtained from the optimal GEV distribution and
the sample S..

Table Al.15 details the T -return level obtained from the optimal GEV for several
periods T and gives the relative error made for each of them (in %) defined by (17). We
note that weighting the error for large periods has changed very little the optimal
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solution: it means that the maximum error was reached for large T , so that the
penalisation was not efficient.

Figure A1.12. Case 2a: Frequency - Magnitude relation obtained with the optimal GEV model (in blue)
that best predicts the given synthetic data (in black) with respect to the weighted Loo-error: in natural
scale (left) and in logscale (right).
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Table A1.15. Case 2a: Comparison between the given synthetic data and the optimal GEV model using the
weighted Loo-error, with the relative error (%).

Return Period (years) 2 5 10 50 100 500 1000 3000 10000
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0
Approx Mag (m) 0445 | 0448 | 0452 | 0478  0.507 | 0.701 0914 | 1.669  3.940
e(T) 1598 1705 1785 | 1898 1826 | 1128 | 3.764 4318 @ 1479

Al.3.1.5. Models comparison

In order to ease comparison, Figure A1.13 draws both models obtained from both criteria
(15), (18), (20) and (22).

Figure A1.13. Case 2a: Frequency - Magnitude relation obtained with the optimal GEV model (in blue
and red) that best predicts the given synthetic data (in black): in natural scale (left) and in logscale (right).
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Al.3.2. Case 2b

In Case 2b, we use the synthetic data of Table A1.6 and the additional ones of Table
Al.7.

Al.3.2.1. L2-error
We define the following error criteria:

26

S (ar, — 46(T))

i=1
where S, = (T;, X1,)1<i<26 are the synthetic data of Tables A1.6 and A1.7, with T; the
return period and xr,the associated magnitude.

Err?(Sy,0)

(24

Using the TNC optimisation algorithm with 100 different starting points, we got the
following optimal point:

8+ = (u*, 0%, £¥)=(0.542937,0.001,0.867794) 25)

The associated error is:
Errs =0.1715

Figure A1.14 draws the T -return level obtained from the optimal GEV distribution and
the sample Sp.

Table A1.16 details the T -return level obtained from the optimal GEV for several
periods T and gives the relative error made for each of them (in %) defined by (17).

Figure Al.14. Case 2b: Frequency - Magnitude relation obtained with the optimal GEV model (in blue)
that best predicts the given synthetic data (in black) with respect to the L2-error: in natural scale (left)

and in logscale (right).
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Table A1.16. Case 2b: Comparison between the given synthetic data and the optimal GEV model using the
L2-error, with the relative error (%).

Return Period (years) 2 5 10 50 100 500 1000 | 3000 | 10000
Ref Mag (m) 053 | 0.54 0.55 059 | 0.62 0.79 0.95 1.6 4.0
Approx Mag (m) 0.543 | 0.546 0.550 0.576 | 0.604 0.795 1.00 1.741 | 3.952
e(T) 2.52 1.11 168e-2 | 240 | 2.55 6.23e-1 | 5.68 8.82 1.21
Return Period (years) 15 20 25 30 40 60 70 80 90
Ref Mag (m) 0.56 | 0.56 0.57 0.57 | 0.58 0.60 0.60 0.61 0.62
Approx Mag (m) 0.554 | 0.557 0.560 0.564 | 0.570 0.582 0.587 | 0.593 | 0.599
e(T) 116  544e1 | 1.71 114 | 1.76 3.04 2.08 2.76 343
Return Period (years) 125 150 175 200 300 400 750

Ref Mag (m) 063 | 0.65 0.66 067 | 0.71 0.75 0.87

Approx Mag (m) 0.618 | 0.631 0.643 0.656 | 0.704 0.750 0.902

e(T) 197 298 2.51 210 | 819%-1 | 417e2 | 3.65
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Al.3.2.2. Weighted L2-error

In order to force a best adequation over the large periods T, we consider the weighted
least square error defined by:

26
Err®(Sy. qe) = Z log (T )(zr, — qo(T;))? (26)
i=1

where Sy = (T, X71,)1<i<26 are the synthetic data of Table A1.6 and Table A1.7, with T;
the return period and X7, the associated magnitude.

Using the TNC optimisation algorithm with 100 different starting points, we obtain the
following optimal point:

6+ =(u*, 0%, §¥)=(0.53762,0.001,0.868286)(27)
The associated error is:

Err+ =0.6837

Figure A1.15 draws the T -return level obtained from the optimal GEV distribution and
the sample Sp.

Table A1.17 details the T -return level obtained from the optimal GEV for several periods
T and gives the relative error made for each of them (in %) defined by (17). We note that
even if the global error is larger, the optimal GEV distribution fits better for periods
larger than 500 years.

Figure Al.15. Case 2b: Frequency - Magnitude relation obtained with the optimal GEV model (in blue)
that best predicts the given synthetic data (in black) with respect to the weighted L2-error: in natural
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Table A1.17. Case 2b: Comparison between the given synthetic data and the optimal GEV model using the
weighted L2-error, with the relative error (%).

Return Period (years) 2 5 10 50 100 500 1000 3000 | 10000
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0
Approx Mag (m) 0.538 | 0.541 0.545 0.571 | 0599 | 0.790 1.00 1.74 3.96
e(T) 1.52 1.30e-1 | 9.83e-1 | 329 3.39 29%-2 | 525 8.74 1.00
Return Period (years) 15 20 25 30 40 60 70 80 90
Ref Mag (m) 0.56 0.56 0.57 0.57 0.58 0.60 0.60 0.61 0.62
Approx Mag (m) 0.548 | 0.552 0.555 0.558 | 0.564 | 0.576 0.582 | 0.588 | 0.593
e(T) 2.11 1.49 2.63 2.07 2.67 3.92 2.96 3.62 4.27
Return Period (years) 125 150 175 200 300 400 750
Ref Mag (m) 0.63 0.65 0.66 0.67 0.71 0.75 0.87
Approx Mag (m) 0.612 | 0626 0.638 0.651 | 0.699 0.745 0.897
e(T) 2.79 3.77 3.29 2.86 1.52 6.0e-2 | 315

Al.3.2.3. Loo-error

We define the error criteria defined in (20).

Err(Sy, go) = max |xt,— qe(T:)|  (28)

where S, = (T;, X1,)1<i<26 are the synthetic data of Table A1.6 and Table A1.7 with T;
the return period and X7, the associated magnitude.

Using the TNC optimisation algorithm with the optimal point obtained with the L>-error
as starting point, we obtain the following optimal point:

8+ = (u*, 0%, £) = (0.478596,0.00100039, 0.868782)  (29)
The associated error is:

Err< =0.0854126

Figure A1.16 draws the T -return level obtained from the optimal GEV distribution and
the sample Sb.

Table A1.18 details the T -return level obtained from the optimal GEV for several
periods T and gives the relative error made for each of them (in %) defined by (17).

Figure A1.16. Case 2b: Frequency - Magnitude relation obtained with the optimal GEV model (in blue)
that best predicts the given synthetic data (in black) with respect to the Loo-error: in natural scale (left)

and in logscale (right).
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Table A1.18. Case 2b: Comparison between the given synthetic data and the optimal GEV model using the
Loo-error, with the relative error (%).

Return Period (years) 2 5 10 50 100 500 1000 3000 | 10000
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0
Approx Mag (m) 0479 | 0482 | 0.486 0512 | 0540 | 0732 | 0.942 1.685 | 3.916
e(T) 9.62 10.8 11.71 | 133 12.9 7.35 7.99%-1 | 534 2.10
Return Period (years) 15 20 25 30 40 60 70 80 90
Ref Mag (m) 0.56 0.56 0.57 0.57 0.58 0.60 0.60 0.61 0.62
Approx Mag (m) 0489 | 0493 | 04% 0499 0506 | 0518 | 0.523 0529 | 0.535
e(T) 12.6 12.0 13.0 12.4 12.8 13.72 | 128 13.3 13.8
Return Period (years) 125 150 175 200 300 400 750

Ref Mag (m) 0.63 0.65 0.66 0.67 0.71 0.75 0.87

Approx Mag (m) 0.554 | 0567 | 0.580 0592 | 0.641 | 0.687 0.840

e(T) 12.1 12.8 12.2 11.6 9.77 8.39 3.50

Al.3.2.4. Weighted L ~-error

In order to force a best adequation over the large return periods T, we consider the
weighted least square error defined by :

Err(Sh, go) = max | log(T:)[x1,— qa(T?)]| (30)

where Sy = (T;, X71,)1<i<26 are the synthetic data of Table A1.6 and Table A1.7, with T;
the return period and X7, the associated magnitude.

Using the TNC optimisation algorithm with the optimal point obtained with the L>-error
as starting point, we got the following optimal point:

6% =(u*, 0%, £¥)=(00.447999,0.001,0.870727)

The associated error is:
Errx =0.570137

Figure A1.17 draws the T -return level obtained from the optimal GEV distribution and
the sample Sp.

Table A1.19 details the T -return level obtained from the optimal GEV for several periods
T and gives the relative error made for each of them (in %) defined by (17). We note that
even if the global error is larger, the optimal GEV distribution fits better for periods
larger than 1 000 years.

(€2))

Figure A1.17. Case 2b: Frequency - Magnitude relation obtained with the optimal GEV model (in blue)
that best predicts the given synthetic data (in black) with respect to the weighted Loo-error: in natural

scale (left) and in logscale (right).
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Table A1.19. Case 2b: Comparison between the given synthetic data and the optimal GEV model using the
weighted Loo-error, with the relative error (%).

Return Period (years) 2 5 10 50 100 500 1000 3000 10000
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0
Approx Mag (m) 0448 | 0451 | 0455 | 0481 0510 | 0.704 | 0917 | 1.67 3.94
e(T) 15.4 16.5 17.3 18.4 17.8 10.9 3.49 4.41 1.54
Return Period (years) 15 20 25 30 40 60 70 80 90
Ref Mag (m) 0.56 0.56 0.57 0.57 0.58 0.60 0.60 0.61 0.62
Approx Mag (m) 0459 | 0462 | 0465 | 0469 0475 | 0487 0493 | 0499  0.504
e(T) 18.1 17.5 18.3 17.8 18.1 18.8 17.8 18.2 18.6
Return Period (years) 125 150 175 200 300 400 750

Ref Mag (m) 0.63 0.65 0.66 0.67 0.71 0.75 0.87

Approx Mag (m) 0523 | 0537 | 0550 | 0.562 | 0.611 | 0.658 | 0.813

e(T) 16.9 17.4 16.7 16.1 13.9 12.2 6.59

Al.3.2.5. Models comparison

In order to ease comparison, Figure A1.18 draws both models obtained from all the
criteria.

Figure A1.18. Frequency - Magnitude relation obtained with the optimal GEV model (in blue and red)
that best predicts the given synthetic data (in black): in natural scale (left) and in logscale (right).
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Al.3.3. Case 2c
In Case 2c, we use the synthetic data of Table A1.8.
To fit a GEV distribution on the synthetic data, we define the error function:

2
6

4
Err®(Se,q0) = Y (a1, —4q Z (X1, — qo(T3))? (32)

i=1

where Sc = (T;, X1,)1<i<6 are the known synthetic data and (X7r;)1<i<4 are the 4 unknown
return levels, only described by their distribution.

Then, the error function Err’(S., qe) is a random variable because of the randomness of
the return levels associated to the return periods 500, 1 000, 3 000 and 10 000 years.
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We will consider several probabilistic features of the random variable Err’(S., Qe) to
find the optimal 6.

Al.3.3.1. Mean feature

In this section, we consider the mean of the random variable Err’(S., qe) and we find
the optimal 0 that minimises the mean error:

0+ = argmin E Err’(S., qe) (33)

Using the TNC optimisation algorithh with the optimal point obtained in the Case 2b
with the Lo-error as a starting point, we obtain the following optimal point:

0+ = (u*, 0%, £*) =(0.524142,0.00104785, 0.862527) (34)
The associated error is: Err+ = 0.6969

Figure A1.19 draws the T -return level obtained with the optimal GEV distribution.

Table A1.20 details the T-return level obtained from the optimal GEV for all the periods
T. When the return level was unknown, we give to which quantile of the uncertainty
distribution the model value corresponds.

Figure A1.19. Case 2c: Frequency - Magnitude relation obtained with the optimal GEV model (in blue)
that best predicts the given synthetic data (in black) minimising the random mean squared error E
Err2(Sc, q0): in natural scale (left) and in logscale (right).

Case 2¢ - Mean Error Lz Case 2¢ - Mean Error L2
4 E\
!
n"l
/
r
31 r
I1
o L )
7
21 £ ;
1‘\..: 4
/1 r/
r
/ /
1
" A N
T T L —
T T il i T T T, T T T
k) 10! pley o o 19° 10 i 1 s}
T -

Table A1.20. Case 2¢: Comparison between the given synthetic data and the optimal GEV model
minimising the random mean squared error E Err2(Sc, q0), with the relative error (%). For the uncertain
values, we give the quantile of the estimated return level.

Return Period (years) 2 5 10 50 100 500 1000 3000 10 000
Mean 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0
Approx Mag (m) 0.525 0.527 0.531 0.558 0.587 0.781 0.993 1.73 3.94
Quantile - 0.41 0.76 0.82 0.45

e(%) 1.02 2.34 3.38 541 5.30

A1.3.3.2. Quantile feature

In this section, we consider the quantile 95% of the random variable Err?(S., qe) and we
find the optimal @ that minimises the quantile error:
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0+ = argmin Quantileg g5 (Err’(Se, ge)) (35)

Using the truncated newton méthod optimisation algorithm with the optimal point
obtained in the Case 2b with the L-error as a starting point, we obtain the following
optimal point:

0+ =(u*,0*,6%)=(0.516115,0.00108486,0.859784) (36)
The associated error is:

Err< =1.04575
It means that P[ Err’(Se, qe) > Err+? ] =0.05.

Figure A1.20 draws the T -return level obtained from the optimal GEV distribution.

Table A1.21 details the T —return level obtained from the optimal GEV for all the periods
T.

When the return level is unknown, we give to which quantile of the uncertainty distribution the model
value corresponds.

Figure A1.20. Case 2c: Frequency - Magnitude relation obtained with the optimal GEV model (in blue)
that best predicts the given synthetic data (in black) minimising the Quantileg g5 Err?(Sc, qe): in natural
scale (left) and in logscale (right).
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Table A1.21. Case 2¢: Comparison between the given synthetic data and the optimal GEV model
minimising the Quantile0.95 (Err2(Sc, q0), with the relative error (%). For the uncertain values, we give
the quantile of the estimated return level.

Return Period (years) 2 5 10 50 100 500 1000 3000 10 000
Mean 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0
Approx Mag (m) 0.517 0.519 0.523 0.551 0.581 0.778 0.994 1.75 3.98
Quantile - - - - - 0.39 0.77 0.84 0.48
e(%) 2.53 3.81 4.80 6.61 6.33
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Al.3.3.3. Models comparison

In order to ease comparison, Figure A1.21 draws both models obtained when minimising
the mean error and its quantile of order 95%. We note that both criteria lead to the same
optimal solution.

Figure A1.21. Case 2c: Frequency - Magnitude relation obtained with the optimal GEV model (in blue
and red) that best predicts the given synthetic data (in black) minimising the mean feature of Err2(Sc, q0)
(in blue) and its quantile 95% feature (in red): in natural scale (left) and in logscale (right).
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A1l.4. Conclusion

The benchmark study proposed an exercise on the statistical modelling. The main goal
is to better understand the quantitative technical analysis steps and processes used for
assessing hazard frequency and magnitude for external event risk assessments. To this
end, we have the synthetic data for a hypothetical external event.

In this report, we modelled the hazard frequency-magnitude relation with a generalised
extreme value distribution. Several criteria to fit the GEV distribution: Lz-error and L -
error. For the Case 1, a 3-points interpolation is performed.

For the synthetic data with no uncertainty, we saw that the criterion allowing the best
fitting of GEV distribution is L>-error. For the synthetic data with the uncertainty in some
points, minimising the random mean squared error has the best precision.

In this benchmark, whatever the type of data, we managed to approximate the synthetic
model/data by a GEV distribution.
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Annex B. Submission by Finnish Meteorological Institute

OECD/NEA Benchmark on External Events Hazard
Frequency and Magnitude Statistical Modelling

Olle Réty and Marko Laine
Finnish Meteorological Institute

20.6.2019

Introduction

This R notebook contributes to the OECD /NEA benchmark exercise given in the title.
The objective of the exercise is stated as the following:

The objective of this benchmark study is to facilitate an exercise on statistical
modelling in order to better understand the quantitative technical analysis steps
and processes used for assessing hazard frequency and magnitude for external
events risk assessment. This benchmark study report provides details (data and
overall objectives) for the benchmarking exercise by specifying synthetic data
for a hypothetical external event (e.g., precipitation, extreme temperatures,
high winds). The analysis steps, assumptions, insights, and modelling results of
the benchmark participants will be collected and summarized to gain insights
from the activity.

Synthetic data is provided with only little information on data itself, generating processes
or uncertainties. The synthetic data approach is motivated by the fact that it is possible
to evaluate the predictive performance of the suggested statistical model and control the
data behavior as well as add known uncertainty to it. Two cases are provided: one with a
given data generating model and a “blind-test case” where only the data is provided. As
requested by the organizer of this exercise the following aspects are documented:

* Model assumptions
« Qualitative/quantitative modeling results
+ Model adequacy assessment and the results from this assessment

To make the approach and road to suggested solutions as transparent as possible, all
the necessary steps to repeat the exercise (excluding setting up some parts of the R
environment) are provided in this notebook. The notebook first provides some theoretical
and technical background for the selected approach and the assumptions. Then, results
for fitting the selected statistical models are presented for each test case together with an
analysis of potential uncertainties.

WEe first introduce the data provided in the exercise. Then, the underlying theory and
crucial assumptions are presented together with the framework for the model adequacy
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assessment. Next, model- and case-specific results and model adequacy assessment are
given. The notebook is concluded with a summary of the most essential results.

Data description

Case 1

In the first case, the functional form of the data generating model is known. The model
for the magnitude M with respect to return period ¢ is written as

M(t) = 0.5 + 0.5log,o(t). (1)
Case 1
25
2
8 2.0
()]
E
(D]
g 1.5
=
5
21.0
=
05
1 10 100 1000 10000

Return period (years)

Figure 1: Data in Case 1.

The data for the Case 1 is plotted in Fig 1. There are a total of 10 values for M
corresponding to different return levels, the magnitude increasing from 0.5 m for a 1-year
event to up to 2.5 m for an event happening on average once every 10 000 years. Given
the unit of M, it could be interpreted as the magnitude of the water level in a water body
or river, which gives some hints on the assumed precision and accuracy of the data. Note
that here we have plotted z axis on a logarithmic scale to highlight the linear relationship
between M and the logarithm of . The implications of this relationship are discussed in
the results section.
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Case 2

Case 2 is a blind-test case, where only data has been provided and the data generating
model is nunknown. There are a total of three sub-tasks in Case 2.

case?a <- data.frame(
x=c (1+1e-5,2,5,10,50,100,500,1000,3000,10000) ,
y=c(0.53,0.53,0.54,0.55,0.59,0.62,0.79,0.95,1.6,4.0)
)

Case 2(a)

w

Magnitude (meters)
[a]

—

0 2500 5000 7500 10000
Return period (years)

Figure 2: Data in Case 2(a).

In Case 2(a), M exceeds 4 m on average once every 10 000 years (Fig. 2). The main
difference to Case 2(b) and 2(c) is the smaller number of data points available for M.
Figure 2 shows that the relationship between M and t is quite linear apart from the
smallest values for ¢. Again, the implications of this behavior are discussed in the results
section.

As stated above, Case 2(b) differs from 2(a) by having more data points available (Fig.
3). The values of M are the same for short time intervals, while for some reason the two
largest values of M differ slightly between between Case 2{a) and 2(b). However, we still
interpret that the generating process is the same in both cases and that the aim is just to
test how much the increased amount of data affects model fitting.

In Case 2(c), which is illustrated in Fig. 4, the exact values of M are partly unknown
and some information on uncertainty is given for the rarest events. The mean estimate
is given as black dots, standard deviation marked with red and the range between the

3
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Case 2(b)
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Figure 3: Data in Case 2(b).

5th and 95t percentile with brown dots in the figure. The uncertainty distribution is not
exactly normal for any of the return levels, as there is a slightly longer tail towards smaller
values for ¢ € [500,3 000,10 000] and towards larger values when ¢ = 1 000 years. Based
on this, we interpret that the aim is to use this information to obtain a, better estimate of
modeling uncertainty. For the analysis, where we need to have some uncertainty estimate
for all observed quantiles, we have linearly extrapolated the standard deviation to all
values of ¢ (not shown).

Assumptions and model adequacy assessment ap-
proach

There are plethora of statistical models which could be considered in this exercise. However,
as the aim is to model exceedingly rare hazardous events, we restrict the analysis to
models arising from classical univariate extreme value theory, We will assume that the
underlying data in both Case 1 and 2 describe the annual maxima of a set of independent
and identically distributed random variables (X, X5, ..., X;), where n is the number of
observations for one year. The classical extreme value theory states that as n — oo,
generalized extreme value distribution (GEV) is the only possible limiting distribution for
the annual maxima. Following the notation of Coles [2001] we write the GEV distribution
G(z; p,0,8) as
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Case 2(c)
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Figure 4: Data in Case 2{c).

Gz p,0,8) :exp{f {1+€<20Mﬂ%}7 (2)

where p, 0 and £ denote the location, scale, and shape parameter with —co < u < o0,
o> 0and —oo < £ < o0, respectively. GEV is a generalization of three special cases,
which are defined by the value of the shape parameter ¢: Fréchet (type II, £ < 0), Weibull
(type III, £ > 0) and Gumbel (type I, § — 0) distribution.

In all tasks, the data essentially describes the relationship between the specific return
levels of M and the corresponding return periods ¢. Thus, it is convenient to define the
model in terms of the quantile function for which GEV has a closed-form expression:

L {u ¢ [1—{—log(1 —p)}¢], for £ £ 0 @)
v 1 — o log{—log(l —p)}, for£ =0

Here G(z,) =1 —pso that t = 1/p. We use (3) extensively when inferring the optimal
model parameters and the corresponding modeling uncertainties in the test cases.

We take a Bayesian approach to the estimation of the GEV parameters. The well-known
Bayes’ theorem states that the posterior distribution of some model parameters & given
observations g, can be expressed as w(0|yops) o L(0]yops)p(6), where L{(f|yums) is the
likelihood function of 8 and p(d) is the prior parameter distribution. One of the main
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strengths in the Bayesian approach is that it provides a natural way to estimate both
parameter and observational uncertainties. In this exercise, the underlying likelihood
function L(8|y..,) is unknown, as the observations from which the return levels have been
estimated are not available. However, the likelihood function can be assumed to be of
a certain well-known form such as Gaussian. The sample quantiles are approximately
Gaussian and it would be possible to formulate their exact distribution too, if we had
better information on processes that generate the given magnitude values. The discussion
in the following sections suggests that Gaussian likelihood function can provide plansible
results for the model fitting. We implemented two approaches for Bayesian inference in
this notebook: (i) approximate Bayesian computation {ABC) which assumes that we can
generate new observations and (i) MOMC simulation based approach assuming Gaussian
likelihood and observation weights that depend on some assumed uncertainty properties
and GEV asymptotics.

ABC is a non-parametric approach for parameter inference in cases where the likelihood
function is intractable. The main idea in ABC is to (i) sample model parameters from
a prior distribution, (ii}) simulate the corresponding observations using the sampled
parameters, (i) caleulate informative summary statistics from the simulated observations
and (iv) then compare the simulated summary statistics against the actual ones with a
certain distance metric. To be more specific, a parameter sample £ is drawn from prior
parameter distribution p(#), which (for example) can assumed to be uniform if no prior
knowledge is provided. Using the sampled parameters & we simulate quantiles z; from
the GEV quantile function (3). They are here used directly as the summary statistics.
Euclidean distance d is then calculated between the observed and simulated quantiles.
If d is smaller than some pre-specified tolerance e, the parameter sample is stored and
sampling repeated until a sufficient number of samples has been obtained.

Parameter sampling can be conducted several different ways, with algorithms ranging from
simple rejection sampling to more complex Markov chain Monte Carlo (MCMC) algorithms.
While all of these approaches have their specific merits and shortcomings, MCMC is used
in this exercise, partly because of personal preference and partly due to more efficient
estimation of the approximate posterior distribution. In addition to ABC-based MCMC
sampling procedure (ABC-MCMC), we evaluate the parameter uncertainty also directly
from the posterior distribution using traditional MCMC. The obtained parameter samples
are used to estimate the overall predictive uncertainty of the simulated M.

The details of the ABC-MCMC algorithm can be found from Marjoram et al. [2003]. There
are several tools for R (e.g. EasyABC and abctools) and other programming languages
for implementing ABC sampling [Nunes and Prangle, 2015]. However, a set of simple
functions was written for this specific exercise which combine a rejection sampling step
[Wegmann et al., 2000] with MCMC as in EasyABC [Jabot et al., 2013] and which are
available together with this notebook.

For the direct likelihood based approach the MCMC sampling was conducted using FME
package available in CRAN. This package relies on earlier MATLAB implementation of
these alzorithms. More detailed description of the algorithms implemented in this package
can be found from Haario et al. [2006] and Haario et al. [2001].
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Case 1
Model details results

Equation (1) shows that there is a linear relationship between M and — log(1/t) in the
generating model. This suggests that the Gumbel distribution is a suitable distribution
candidate in Case 1. Gumbel distribution is obtained from (1) by setting £ = 0:

v

G(z:p. ) = expl— exp(——F)) (4)

As mentioned above, to model return levels of M we use the GEV quantile function (3):

zp = p— alog(—log(l — p)) = p— olog(—log(l — %:‘]‘ (5)

Comparing (1) and (5) we see that with suitable values for g and o the generating function
and the Gumbel quantiles approach asymptotically each other as £ = =c. Thus, setting
p=05and o= % we will get an increasingly good match with the observed M when
i increases.

The behavior of this asymptotically optimal model is illustrated in Fig. 5. For ¢ = 10 years
the fit is extremely good, while for smaller values the asymptotic model unrealistically
tends to zero. The underestimation of magnitude M when ¢ is small can be understood by
the fact that the extreme value theory considers asymptotic behavior; GEV is a limiting
distribution of sample maxima, when the number of observations tends to infinity and
therefore is not expected to describe commonly oceurring values of M well.

Results of the assessment

Even though the asymptotically optimal GEV model can be inferred directly in Case 1, it
is also useful to gain some insights on the predictive uncertainty. This would be of course
of interest, were the optimal parameter values unknown. We first use ABC-MCMC for
inferring the parameter uncertainty. Uniform prior distributions have been used for all
GEV distribution parameters with the restrictions g = 0 and ¢ = 0. While £ = 0 in the
asymptotically optimal case, we allow its values to vary slightly around the zero to better
emulate the potential parameter uncertainty. The used prior distributions are then

1~ 7(0.3,0.7)
o ~ U(D,0.0.5)
£ ~U(—0.2,02)

The number of samples drawn from the approximate posterior is n = 10 000. We leave
out 1-, 2- and S-year return levels when fitting the model, as these common cases are
not of interest and hamper the model fitting. In ABC-MCMC, the maximum allowed
distance between the simulated and observed quantiles as well as the proposal range at
each sampling step are estimated in advance using naive rejection sampling. A code
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Case 1
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Figure 5. Asymptotic model (red curve) plotted together with the synthetic data in Case
1.
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snippet illustrating the parameter settings and most important function calls are provided
for Case 1.

drop <- c{1,2,3) #Select, which values are dropped
set.sead(100)
pars <- matrix{c(0.3,0,-0.2,

0.7,0.5,0.2), nrow = 3)

rejection_sample <- 100000 #Rejection sample
n_sample <- 10000 #MCMC sample
tol <- 0.001 #Tolerance for acceptance

weights <- NULL # No weighting

initialisaticn <- pre calc{n sample = rejection_sample, pars = pars, tol = tol,
ret = caselfx[-drop], target = casel$y[-dropl,
weights = weights, calc.weights = F)

posterior_1 <- run MCMC ABC(init vals = initialisation$init wals, pars = pars,
iterations = n_sample, max dist = initialisation§max dist
ret = casel$x[-dropl, target = casel$y[-dropl,
s weipghts = weights[-dropl, phi = 1,
proposal range = initialisation$proposal range)

Figure 6 shows the parameter sampling results for ABC-MCMC in Case 1. The optimal
parameter values (fi, &, £) shown in the lower left corner are estimated as posterior means
of the marginal distributions. These values provide a very good fit to the observed data
apart from the smallest values which were also excluded from the analysis. The posterior
distributions of the model parameters show that although there are not much prior
information provided for ABC-MCMC, the algorithm is able to identify all parameters
well. The bi-variate parameter distributions shown in the middle row illustrate that
parameter pairs are correlated with each other and that the correlation is strongest
between the scale (o) and shape (£) parameter. The plot also illustrates an important
property of the ABC-MCMC sampler: As the acceptance tolerance depends solely on the
distance between the observed and modeled summary statistics, bi-variate distributions
have a clear boundary defined by the tolerance. This is an important difference to
traditional MCMC.

To assess the predictive uncertainty in the simulated magnitude, Fig. 7 shows the predictive
distribution obtained from Eq. (3) using the sampled GEV parameter values for return
periods up to 500 000 years (see also Table 1). When looking at the mean prediction (blue
curve), it is seen that it matches the asymptotically optimal values (red curve) almost
exactly apart from the shortest return periods. Furthermore, the uncertainty range in the
posterior predictions is narrow even for the largest values of £. We conclude that using
GEV provides a very good fit to the synthetic data in Case 1 and has a good predictive
skill as well as low predictive uncertainty for the long return periods.

Traditional MCMC

As the second approach to parameter inference, we use traditional MCMC sampling
assuming Gaussian likelihood. Prior distributions for g, o and £ are assumed to be also
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Figure 6: Panel showing different aspects of the posterior parameter distributions obtained
with ABC-MCMC in Case 1. The first row shows the posterior marginals for location
(left), scale (middle) and shape (right) parameter together with the prior distributions
(red shading). The middle row shows the bi-variate posterior densities for each of the
parameter pairs. Bottom row illustrates the distribution mean fit (left) with respect to
the synthetic observations and also shows the sampling traces for the location (middle)
and shape parameter (right), respectively.
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Case 1, ABC-MCMC

Magnitude (meters)
— M 2

=

1e+01 1e+03 1e+05
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— Bestfit — Estimate = Obs

Figure 7: Predictive distribution for magnitude M obtained with ABC-MCMC. The mean
prediction (blue) and the asymptotically best fit (red) are shown. The interquartile range
and the range between the 5 and 95'® percentile of the predictive distribution is indicated
by the grey shadings. Observed synthetic values are also shown with two synthetic values
to be predicted marked with squares.

Table 1: The estimated mean return level shown together with the 5th and 95th percentile
of the predictive distribution for return periods between S00-500 000 years, obtained with
ABC-MCMC in Case 1.

500 [ 3000 [ 20000 [ 500000
Mean | 1.85 | 2.35 [ 284 [ 3.34
5% 182231 |27 | 315
05% | 188|238 |205 | 357
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Gaussian with
o~ N{0.4, 11]?].
o~ N(0.5/ log(10), 10%),
£ .-"n."{[ll,?z]l_

The prior means are close to the optimal values, while the spread is large, which leads to
rather uninformative priors. One of the major differences with respect to ABC-MCMC is
the inclusion of weights for different values of M. We use the following weight function

w; = 1/{1 —exp(—t;/10))a:, i=1...., N,

where o; is the (potentially unknown) spread for the #*® observed magnitude and N is the
number of synthetic observations. This weighting aims to reduce the effect of small values
of M to the parameter estimation and simultaneously takes the potential increase in the
observation uncertainty into account when M increases. Doing this there is no need to
remove small observed values of M when sampling from the posterior distribution. We
provide a code snippets also for MCMC, which illustrate how the parameter priors are
defined and how to use the most important function calls.

casel$w <- 1/(1-exp(-casel$x/10))+*0.05

paramdef <- list(

parnames = c{'p', 'g', 'E'},

par( = c(0.4, 0.5/1lag(10), 0.0},
par.low = c(0, a, -Inf),
pri.mu = e{0.4, 0.6/log(10), 0.0},
pri.sig = (10, 10, 32}

)]

mcmcopts <- list(

nsimu = 12000,

burn 2000,

qocov = diag(pmax(0D.01, (paramdef$par0O+0.01)"2))
}

chain 1 <- memerun(list{modelfun-modelfun) ,casel,paramdef ,mcmcopts)

## pumber of accepted runs: 3122 out of 12000 (26.01667T%)

The posterior distribution obtained with MCMC is shown in Fig. £ As one would expect,
the marginal aspects as well as the optimal parameter values are similar to ABC-MCMC.

The predictive distribution and the requested return levels are shown in Fig. % and Table 2,
respectively. The predictive uncertainty is larger for MCMC than for ABC-MCMC, which
iz probably caused by the addition of (somewhat hypothetical) weights encompassing
observational nncertainty.
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Figure 8: Same as in Fig. 6 but for MCMC in
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Case 1.

Table 2: The estimated mean return level shown together with the Sth and 95th percentile
of the predictive distribution for return periods between S00-500 000 years, obtained with

MCMC in Case 1.

500 5 000 50 000 200 000
Mean 1.84 235 2.88 3.43
5% 1.80 2.29 2.73 3.13
95% 1.88 241 3.08 3.78
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Case 1, traditional MCMC
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Figure 9: Same as in Fig. T but for MCMC in Case 1 with the grey line showing the
mean prediction.

Case 2

In Case 2, the underlying generating model is unknown, which means that the direct
evaluation of the predictive performance of the chosen statistical model is impossible. We
use the full form of GEV and the corresponding quantile function given by Equations
(2) and (3). We compare both ABC-MCMC and MCMC algorithms and provide the

requested results in all three cases.

Model details results

We first inspect the data to obtain some prior insights into it. The synthetic data for
the magnitude M and return period ¢ suggests a rather linear relationship between them,
particularly as ¢ increases. GEV distribution provides a similar behavior, when £ is close to
unity and p —+ 0. This information can be facilitated when constructing prior distributions
for the model parameters, as p should be close to the intercept, o is proportional to the
slope of the fit and & ~ 1.

Case 2(a)
ABC-MCMC
We first present the results for ABC-MCMC. The selected uniform priors are

1~ U(0.3,0.7),
g ~ U{0,0.8),
£ ~ U(0.7,1.2).

The same prior distributions are used in all the following sub-tasks. While the selection
of suitable prior distributions requires some hand tuning, the results were not found to be
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overly sensitive to the specific choice of prior values, as long they were within a reasonable
range. The acceptance ratio in the rejection sampling had to be set to 0.0005%, which is
a very small number and requires a sample size of nggg = 1 000 000, In all cases, values
for t <= 10 years have been dropped from parameter estimation to ensure a better model

fit to large M.

drop <- c(1,2,3) #Select, which values are dropped

pars <- matrix(c(0.3,0,0.7, #lower boundary
0.7,0.8,1.2), m 3) #upper boundary

rejection sample <- 1000000 #Rejection sample

n_sample <- 10000 #MCMC sample

tol <- 0.000005
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Figure 10: Same as in Fig. 6 but for ABC-CMCMC in Case 2(a).
The optimal values for the GEV distribution parameters are again given in the lower left
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Table 3: The estimated mean return level shown together with the 5th and 95th percentile
of the predictive distribution for return periods between 500-300 000 years obtained with

ABC-MCMC in Case 2(a).

500 | 5000 | 50000 | 500000
Mean | 0.76 | 2.33 [ 16.62 | 148.36
5% 072 (224 | 1493 | 11351
055 | 0.20] 240 [ 1877 | 196.09

corner of Fig. 10. The fit obtained with these values follows quite closely the observations.
As can be seen from the figure, the uninformative priors do not provide significant amount
of information but the ABC-MCMC is still able to identify posterior distribution relatively
well. In addition, Bi-variate posterior marginals show a strong correlation between the

scale and shape parameter.

Case 2(a)

4 [=2]

Magnitude (meters)
Ma

— Bestfit « Obs

5000

10000 15000

Return period (years)

Range

Figure 11: Same as in Fig. 7 but for ABC-MCMC in Case 2(a).

The predictive distribution obtained with ABC-MCMC iz illustrated in Fig. 11. The
requested return levels are provided in Table 3. These results show that the mean estimate
grows substantially larze when { increases. Whether the magnitude of these results is
reasonable, is briefly speculated later.
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Table 4: The estimated mean return level together with the 5th and 95th percentile of
the predictive distribution for return periods between 500-500 000 years obtained with
MCMC in Case 2(a).

500 5 000 50 000 500 000
Mean 0.76 23 17.25 16227
5% 0.72 225 15.74 128 58
0a% 0.80 237 18.70 19736

Traditional MCMC

We then compute an alternative parameter estimates using traditional MCMC. As in
Case 1, we assume Gaussian likelihood and use Ganssian priors for the model parameter.
The same priors are used throughout Case 2.

p o~ N(0.5,10%),
o~ N{0.0003, 10%),
£~ N(1,005%).

The first 2000 samples are left out as burn-in values after which the number of samples
drawn from the posterior is n = 10 000

paramdef <- list(

s = o', ', g,
- ¢(0.64, 0.000281, 1.02),
= cf{0, a, 0.1,
- ¢(0.5, 0.0003, 1),
- c(10, 10, 0.05)
3
mcmcopts <- list(
neimu = 12000,
burn = 2000,
goov = diag((paramdef$par0+0.01)°2)
3

caseZafv <- 1/(l-exp(-case2a$x/10))%0.05
chain 2 <- mcmcrun{list{modelfun-modelfun),case2a,paramdef ,mcmcopts)

## number of accepted runs: 1577 out of 12000 (13.14167%)

Figures showing the different aspects of the posterior parameter distributions (Fig. 12) as
well as the predictive distribution (Fig. 13) indicate only small differences in comparison
to ABC-MCMC. The largest difference is the slightly narrower uncertainty range and the
higher mean return level estimates for MCMO (Table 4).

Case 2(b)

The technical steps taken in Case 2(b) are practically identical to Case 2(a) and therefore
are not repeated here. The only difference in comparison to Case 2(a) is the larger number
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Figure 12: Same as in Fig. & but for MCMC in Case 2(a).
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Case 2(a), Traditional MCMC
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Figure 13: Same as in Fig. O but for MCMC Case 2{a).

Table 5: The estimated mean return level together with the 5th and 95th percentile of
the predictive distribution for return periods between 3500-500 000 years obtained with
ABC-MCMC in Case 2(b).

500 [ 5000 [ S0000 | 500000
Mean | 0.77 | 2.32 | 16.22 | 142.11
5% 0.73 222 | 1441 | 10688
05% | 020|241 | 1855 | 10202

of quantiles available for parameter estimation.

For ABC-MCMC, the best fit obtained in Case 2(b) iz very similar to case 2(a) and
differences in the posterior parameter distributions are small (Fig. 14). The most notable
difference in comparison to Case 2(a) is seen in the predictive distribution (Fig. 15 and
Table 5), which shows smaller mean values for the predicted magnitude as well as a slightly
broader uncertainty range particularly for longer return periods.

Traditional MCMC

case2bfv < 1/(1-exp(-case2blx/10))+*0.05
chain 2b <- mcmerm{list(model fun-modelfun) ,case?b, paramdef ,mcmcopts)

i number of accepted runs: 2069 out of 12000 (17.24167%)
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Figure 14: Same as in Fig. 6 but for ABC-MCMC Case 2(h).

Table 6: The estimated mean return level together with the 5th and 95th percentile of
the predictive distribution for return periods between 500-500 000 years obtained with
traditional MCMC in Case 2(b).

500 5 000 50 000 S00 000

Mean 0.76 230 16.90 15636

%% 0.74 2.24 15.68 130.85

05% 0.78 2.35 18.26 186.96
20
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Case 2(b), ABC-MCMC
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Figure 15: Same as in Fig. 7 but for ABC-MCMC Case 2(b).

As in Case 2(a), differences between the results for ABC-MCMC and MCMC are modest.
(Figs. 16 and 17). For the longest recurrence intervals, MCMC provides slightly higher
values for the estimated mean return levels, while the uncertainty range is smaller {Table
G).

Case 2(c)
ABC-MCMC

In ABC-MCMC, observational uncertainty is emulated by adding random noise to the
observed summary statistics using the observed standard deviation when estimating
the distance between the simulated and observed quantiles. Otherwise, the technical
implementation iz similar to Case 2(a) and 2(b).

Fig. 18 shows that the inclusion of random noize to the summary statistics leads to
slightly smaller posterior values for £. Even though the uncertainty range is larger than in
Cazes 2{a) and 2(b), ABC sampling i not able to reproduce the given uncertainty range
(Fiz. 19). On the other hand, the uncertainty range in the predictive distribution extends
to much smaller values, which means that incorporating observational uncertainty to the
parameter estimation tends to produce somewhat smaller return level estimates compared
to the previous cases (Table 7).
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Figure 16: Same as in Fig. 8 but for MCMC in Case 2(b).

Table 7: The estimated mean return level together with the 5th and 95th percentile of
the predictive distribution for return periods between 500-500 000 years obtained with

ABC-MCMC in Case 2(c).

500 | 5000 | 50000 | 500000
Mean | 0.78 | 2.28 | 1416 | 110.94
5% 073 2.02 | 9.75 | 54.46

05% | 084|256 |19.25 | 189.19
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Case 2(b), Traditional MCMC
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Figure 17: Same az in Fig. 9 but for MCMC Case 2(b).

Traditional MCMC

We apply traditional MCMC sampling using the given standard deviation with a suitable
weighting function to take the observational uncertainty into account when estimating
the joint posterior parameter distribution.

caseZcfw <- caseZcPsd2 * 1/(1-exp(-case2cix/10))

chain 2c <- mcmerun{list(modelfun-modelfun),case?c,paramdef ,mcmcopts)

## number of accepted runs: 3154 out of 12000 (26.283331)

As can be seen from Fig. 20 the obtained joint posterior distribution is relatively similar to
the one for ABC-MCMC. The main difference between the two approaches is revealed by
locking at the predictive distribution (Fig. 21), which shows a much better correspondence
to the mean observation for MCMC, although the range still does not cover the full observed
uncertainty range. In particular, the lower boundary of the predicted uncertainty range is
too high in comparison to the observed one. On the other hand, the predictive uncertainty
extends to larger values at the 500 000-year return level for MCMC than for ABC-MCMC
(Table 8).

Results of the assessment

The upper bound of uncertainty range for the simulated return level reaches 200 m in Case
2 for the longest requested recurrence interval, which is roughly two orders of magnitude

23
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Figure 18: Same as in Fig. 6 but for ABC-MCMC in Case 2{c).

Table 2: The estimated mean return level together with the 5th and 95th percentile of
the predictive distribution for return periods between 500-500 000 years obtained with

traditional MCMC in Case 2(c).

500 5 000 50 000 500 000
Mean 0.77 236 16.95 151.60
5% 0.73 212 13.33 101.76
05% 0.80 261 21.12 25607
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Case 2(c), ABC-MCMC
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Figure 19: Same as in Fig. 7 but for ABC-MCMC in Case 2(c).

larger than the 10 000-year return level given in the synthetic data set. While this value
sounds unrealistically large regardless of potential physical phenomenon the synthetic
data tries to emulate, without further information on the actual nature of the extremes
generating process it is difficult evaluate the plausibility of the results. In Case 2(c),
uncertainty estimates provided for the predicted distribution quantiles suggest that M
could be substantially smaller than what would be inferred based on Cases 2(a-b) only.
Thus, while GEV is the optimal distribution for describing the asymptotic behavior of
sample maxima, it possible that it overestimates the return levels for very large recurrence
intervals in this case.

An obvious shortcoming of ABC-MCMC is the need for tuning of several parameters and
proper selection of summary statistics. In our case, it was natural to use quantiles directly
as the summary statistic. In many cases, however, the selection of descriptive summary
statistics is not straightforward and requires substantial physical insights to the problem
itself. Even in our case it might have been beneficial to use some other statistics such as
some optimal combination of distribution quantiles. We used an automatic selection of
acceptance distance and proposal range in our ABC implementation before running the
MCMC sampler, which required a substantially large sample size (10%) to work properly
in Case 2. However, the overall computation benefits are substantial and the results were
much better than what would have been obtained without the initialization step.

Implementation of traditional MCMC was based on the assumption on Ganssian likelihood.
The results are very similar to ABC-MCMC, which suggests that this assumption is
feasible. Furthermore, as only 3 parameters were estimated MCMC turned out to be
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Figure 20: Same as in Fig. 8 but for MCMC in Caze 2(c).
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Case 2(c), traditional MCMC
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Figure 21: Same as in Fig. 9 but for MCMC in Case 2(c).

Table 0: Summary of the obtained mean return levels (M) with respect to the requested
return periods (t) in each of the cases (ABC-MCMC,/MCMC).

500 5000 50000 500000
Case 1 1.85/1.84 7.35/2.35 2.84/288 3534/3.43
Case 2(a) 0.76/0.76 2.33/2.31 16.62/17.25 148.36/162.27
Case 2(b) 0.77/0.76 2.32/2.30 16.22/16.90 142.11/156.36
Case 2(c) 0.78/0.77 2.98/2.36 14.16/16.95 110.04/151.60

computationally much efficient than ABC-MCMC. One source for uncertainty in MCMC
is the selection of proper observational weights for M. There is no single preferred way to
do this and our approach is based on heuristic reasoning how the weights could behave.

Conclusions

This notebook provides a solution to the OECD/NEA exercise, where the aim is “to
describe the assumptions made to create the hazard frequency/magnitude model(s),
the qualitative and quantitative results of the model(s), the process used to assess the
adequacy of the model(z), and the results of the model adequacy assessment”. We selected
generalized extreme value distribution as our model candidate due to its well-know
theoretical background and the relatively straightforward parameter estimation. Two
Bayesian approaches for parameter estimation were tested: (i) Approximate Bayesian
Computation (ABC-MCMC) which does not require information on the underlying
likelihood function and (i) pure MCMC sampling assuming Gaussian likelihood. Best
estimates for the GEV parameter values and the corresponding mean return level estimates
are provided as tables for both ABC-MCMC and pure MCMC approaches {Table 9 and
10).

The mean return level estimates are qualitatively similar for both methods. MCMC
tends to produce slightly larger mean values for the 500 000-year return levels in all cases.

27
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Table 10: Best estimates of the distribution parameters for all test cases (ABC-

MCMC/MCMC).
i o g
Case 1 0.507/0.556 0.218/0.2010 -0.000,/0.014
Case 2(a) 0.565/0.579 0.001,/0.0004 0.059/0.983
Case 2(b) 0.570/0.580 0.001,/0.0004 0.050,/0.978
Case 2(c) 0.554/0.567 0.001,/0.0005 0.888 /0958

Comparison of the posterior mean parameter values between ABC-MCMC and MCMC
shows that differences are not very large. MCMC tends to give slightly larger values for
poand £, while the opposite is seen for o, Furthermore, the parameter values are close
to each other in Case 2(a) and (b), while in Case 2(c) £ is slightly smaller particularly
for ABC-MCMC, which is also seen as smaller values of simulated Af in the predictive
distributions.
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Annex C. Submission by Idaho National Laboratory Group 1

Introduction

This paper responds to an OECD Nuclear Energy Agency (NEA) report that calls for a
benchmark exercise on the analysis and assessment of the hazard frequency and
magnitude for external events risk assessments. The objective of this benchmark study
is to focus on the statistical modelling of an external hazard initiating event (IE),
assessing its frequency and magnitude, that could be used in probabilistic risk
assessment (PRA) of external hazards. The NEA report specifies two cases of
hypothetical observational data created from synthetic models (which are used to create
synthetic data that have been generated from a computer) for a hypothetical external
event (e.g. precipitation, extreme temperatures, high winds): (1) a fully revealed “open”
case where both the synthetic data and the synthetic model producing the data are
provided, and (2) a “blind-test case” where only the synthetic data are provided. This
paper documents the author’s analysis steps, assumptions, insights and modelling results
for the exercise.

Case 1 — Known model producing the synthetic data

The following synthetic model is provided in Case 1 to create hypothetical observational
data for the hazard frequency/magnitude modelling:

M =0.5+ 0.5%ogio(a*t)

The synthetic model serves as surrogate for a complex phenomenological process. It is
of the form that different values of “return time intervals” ¢ produce a hypothetical (but
known since it comes from the synthetic model) magnitude M for an annual maxima
event. These types of models can be used to produce “synthetic data” and predict
different event outcomes as a function of time (e.g. producing a flooding hazard curve).

The hypothetical observational data for the magnitude M (in metres) and return period ¢
(in years) from the synthetic model with the “a variable” set to 1 is shown in Table C.1.

Table C.1. Synthetic data for Case 1.

Return Period (years) 1 2 5 10 5 | 100 | 500 = 1000 2000 10 000
Magnitude (metres) 050 @ 065 08 10 14 15 1.9 2.0 2.2 2.5

Participants are asked to use the data for Case 1 and provide a model that best described
the frequency/magnitude relationship and the associated analysis and insights. The
results of this analysis should include those areas identified in Chapter 3 of this
benchmark, including:

e Qualitative aspects and insights.
o Assumptions made to create the hazard frequency/magnitude model.

o The process used to assess the adequacy of the model.
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e Quantitative aspects and insights including:

o The type/form of the model describing the hazard frequency and magnitude
statistical results.

o Uncertainties of the model. Assessing uncertainty is important for both
validation and prediction [NRC, 2010].

o Results of the model adequacy assessment or validation.

Case 2 — Unknown model producing the synthetic data

In Case 2, the synthetic model used is not provided. Instead, three sets of synthetic data
output from the unknown model are provided.

e (Case 2a provides the synthetic data (ten data points) with no uncertainty
associated with the data points (see Table C.2).

e (Case 2b provides additional synthetic data (26 data points) with no uncertainty
associated with the data points (see Table C.3).

e Case 2c has uncertainty estimates on some of the data (see Table C.4).

Table C.2. Synthetic data for Case 2a

Return Period (years) 1 2 5 10 50 100 500 | 1000 3000 10000
Magnitude (metres) 053 | 053 | 054 | 055 | 059 @ 062 @ 0.79 0.95 1.6 4.0

Table C.3. Synthetic data for Case 2b

Return Period (years) 1 2 5 10 15 20 25 30 40
Magnitude (metres) 053 | 053 | 054 | 055 @ 0.56 0.56 0.57 0.57 0.58
Return Period (years) 50 60 70 80 90 100 125 150 175
Magnitude (metres) 059 | 060 ' 060 | 0.61 0.62 0.62 0.63 0.65 0.66
Return Period (years) 200 300 400 500 750 1000 3000 10 000
Magnitude (metres) 0.67 0.71 0.75 0.79 0.87 0.95 1.57 3.97

Table C.4. Synthetic data for Case 2¢

Return Period (years) 1 2 5 10 50 100 500 1000 3000 | 10000
Magnitude (metres) Mean 053 053 054 055 059 | 062 079 0.95 1.6 4.0
Sdev.* ** 004 006 | 0.15 0.46
Gt 072 = 085 1.3 3.2
95t 085 1.1 1.8 4.7
Assumptions

A generalised extreme value (GEV) model was used in this benchmark exercise to
predict the magnitude values for long return periods using the synthetic data provided in
Case 1 and Case 2 (Table C.2., C.3. and C.4.). OpenBUGS was used to implement the
GEV model. It is believed by many analysts that observed data from relatively short-
term return periods should not be used to predict the magnitude values for much longer-
term periods (e.g. use observed data up to 5 000 years to predict for 50 000 years).
However, when such needs arise, for example for the use of external hazard frequency
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in probabilistic risk assessment (PRA) models, various approaches and engineering
judgement have to be used to provide such estimates, and the GEV model is believed to
be such a tool to provide best estimates, with the modelling uncertainty being in mind
when using the results from the model.

Assessment approach

The GEV is a single family of limiting distribution that combines three other limit
distributions: Gumbel, Fréchet and Weibull. It has the following cumulative distribution
functional form:

G(z) = exp (-1 +f(%)]_1/ m

where ¢ is a shape parameter, u is a location parameter, and ¢ is a scale parameter. The
shape parameter ¢ determines the distribution type and the tail behaviour. £ =0
corresponds to the Gumbel distribution, which is unbounded and has exponential tail.
& > 0 corresponds to the Fréchet distribution, which has lower bound and long tail. § <
0 corresponds to the Weibull distribution, which has an upper bound and short tail
(Figure C.1).

Figure C.1. Generalised extreme value distribution family
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The inverse distribution function, or quantile function, is often used to calculate the
extreme values:

zp=G(1-p)= p-F{1-[-log -pI}E+0 (2

The return level z), is exceeded by the annual maximum in any particular year with the

annual exceedance probability p, when the measuring time is in years. Or one can say
that the return level z, is exceeded, on average, once during the return period 1/p.
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The GEV model shown in Eq. (1) was applied to the synthetic data in this benchmark
exercise using OpenBUGS. An example of the script used for Case 1 is shown in Table
C.5.

Table C.5. OpenBUGS script for Case 1 using GEV model

model

{ for(iin 1:N) {

z.pli] ~ dnorm(mean|i],prec)

y-pli] <--log(1 - p[i])

mean|i]<- mu - sigma/xi*(1 -pow(y.pli],-xi))
}
mu ~ dnorm(0,0.0001)
prec<-pow(sd,-2)
sd~dunif(0,10)

xi ~ dunif(-1,1)

sigma ~ dunif(0,10)

}
data

list(p=c(0.632, 0.393, 0.181, 0.0952, 0.0198, 0.00995, 0.002, 0.001, 0.0005, 0.0002, 0.0001, 0.00002,
0.000002),

z.p=c(0.50, 0.65, 0.85, 1.0, 1.4, 1.5, 1.9, 2.0, 2.2, NA, 2.5, NA, NA), N=13)

list(mu=1.0, sigma=1.0, xi=1.0)

Results of the assessment

The predicted results for Case 1 are shown in Table C.6. The results for Case 2 are shown
in Table C.7(Case 2a), Table C.8(Case 2b), and Table C.9(Case 2c).

Table C.6. Case 1 results

Return Period (years) 500 5000 50000 500 000
Magnitude (metres) Case 1 Exact 1.9 2.4 2.9 34
INL mean (metres) 1.88 2.37 2.84 3.31

Table C.7. Case 2a results

Return Period (years) 500 5000 50000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000
INL mean (metres) 0.76 2.34 16.02 136.20

Table C.8. Case 2b results

Return Period (years) 500 5000 50000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000
INL mean (metres) 0.76 2.32 16.26 142.80

Table C.9. Case 2c¢ results

Return Period (years) 500 5000 50000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000
INL mean (metres) 0.76 2.34 16.02 136.20

BENCHMARK ON EXTERNAL EVENTS HAZARD FREQUENCY AND MAGNITUDE STATISTICAL MODELLING



NEA/CSNI/R(2021)10 | 101

Annex D. Submission by Idaho National Laboratory Group 2

Introduction

The aim of the benchmark is to investigate the frequency/magnitude relationship for
external events. Two cases represent different external hazard from synthetic data. The
first case provides both the synthetic data and synthetic model. The second case
introduces three parts with only the synthetic data, where the first and second parts do
not consider the uncertainty, whereas the third part of the magnitude has been provided
with the uncertainty. The magnitude from those two cases is modelled as a function of
return period. The return period is also known as recurrence interval, which is the
estimated average time between floods events occurring.

Linear regression with a transformed form model would be considered to fit the
magnitude vs. return period relationship model for casel. Cases using ordinary least
squared method would have the same assumptions and similar model adequacy
assessment approach. A linear model has the following general form:

Y= Bo+ Bix1+ Boxz ..t €

where the Y is the response variable, x are predictor variables, € is the residuals derived
from the differences between tabulated values and predicted values.

Assumptions

For a linear regression model with ordinary least squared method, there are several
assumptions:

1. residuals are approximately independent, homoscedastic and normally
distributed with zero mean; and

2. there is linearity between the response and predictors.
Model adequacy assessment approach

Linear least squared was used to estimate the parameters in the regression. The model
will be evaluated using the coefficient of determination R* and F-test to assess the model
adequacy. R? could give the strength of the linear relationship between the predictor and
the response variable. F-test provides the test result of whether the linear regression
model provides a better fit to the data than a model only with intercept. The F-statistics
is: F* = [ESE @) - FSE':F}j / [SSEI:F}] , where the
dfg — dfR dfF
SSE = X (observed — fitted)”, SSE(F) is the predicted full model, and SEE(R)
is the reduced model with only the intercept term, df(Residual) = n — (k+1) where k is

. . . . 2 55,
number of parameters being estimates and n is the sample size. The R = 1 — - =

tatk
where the 55, = X, , is the residual sum of squares, and the
55,.. = X.(v. — ¥)7,is the total sum of squares.

Four different types of diagnostic plots will assess each assumption of a linear regression
model:
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1. Residuals vs. fitted: is used to check the residual homoscedasticity assumption.
If a linear model is correctly specified, the residual vs. fitted plots should not
have any systematic features with a flat line. Studentised Breusch-Pagan tests
would be used if this graph does not show a visible flat line with separated dots

around it. The Ef is the studentised test statistics and it is calculated by finding
out the R® when running the auxiliary regression equation of
€% = y, + 1, ¥ + v; examined by regressing the squared residuals on each
independent variable.

2. Normal QQ: is used to check whether the residuals are normally distributed.

A Shapiro-Wilk normality test is another option used to check this assumption.
The W statistic is:

_ ( ?=1“:‘x(z'}:]:
( n x —:f):

i=1 i

Where the x;, are the ordered sample values, a; are constants generated from

the means, variances and covariance’s of the order statistics of the sample from
a normal distribution.

3. Residuals vs. leverage: is used to check the outliers and identify the influential
cases, since extreme values may affect the regression results if those values are
excluded or included from the analysis. Outliers could be identified if they are
outside of the Cook’s distance dashed line.

Case 1

The hazard frequency/magnitude model here for Case 1 fits the linear regression model
with log transformation of return period to describe the relationship between magnitude
and return period since the synthetic model provided is linear. The difference is the
residual term in regression equation, which is the vector values of the differences
between observed values and predicted values

Magnitude, = B, + Bilog(return period;) + ;

Model adequacy assessment approach

The estimated equation is:
Magnitude = 0.503364 + 0.506251 = log(return period)

The estimated values above are the least square estimates of the intercept and slope. They
have standard error for the intercept and slope are 0.07006 and 0.03083, respectively.

The coefficient of determination B* = 0.9988, which means 99.88% of the
uncertainty in the predicted values can be explained by the straight-line regression
model. The assessment of model uncertainties is essential to the practical application of
the models to inform the decision makers. The small uncertainties of the models will
provide the confidence on decision making.

Figure D.1 shows the tabulated/predicted data and the regression model. There is a
narrow range of 95% confidence band. Two tabulated values out of ten not underlying
on the 95% confidence band, but they all fall into the prediction intervals.
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Figure D.1. Return period versus mean magnitude
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The following, Figure D.2 to Figure D.5, are the four different diagnostic plots for the
regression model:

Figure D.2 is the plot of residuals vs. fitted values. The residuals do not change a lot as
the fitted values increase or decrease. Here, an approximate horizontal line without any
patterns shown in Figure D.2 indicates a linear relationship. Figure D.3 is the normal QQ
plot. Although there are a few points that do not follow the straight dashed line, the
normality of assumption is not violated. A Shapiro-Wilk normality test would be used
to check this assumption. 4 p-value (0.161) of this test suggests that no evidence rejected
the normality assumption. Figure D.4 is the plot of Scale-Location.

An approximate flat line shown in this figure demonstrates a constant variance of the
residuals. Figure D.5 is the residual vs. leverage plot. There is a data point in this figure
that exceeds Cook’s distance, which is probably influential to the regression results.
Excluding this outlier data point and re-running the log-transformed variable model, we
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see that there is not a huge difference between the two models. The sample size is small
and there is a large time interval corresponding to each observation. The return period
for expected magnitude prediction on this benchmark is larger than 10 000, which means
excluding this point is not appropriate.

Figure D.2. Residuals vs fitted
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Figure D.5. Residuals vs leverage
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Results

The following table shows the magnitude prediction for Case 1 for the return period of:

Table D.1. Resulting magnitude prediction for Case 1

Return Period (years) 500 5 000 50 000 500 000
Magnitude (metres) Case 1 1.87 2.38 2.88 3.39

The model for Case 1 indicates that for 1% increase in the return period variable, the
magnitude increases by about 0.506*log (1.01) = 0.005.

Results of Assessment

Utilising the linear regression to predict magnitude is simple and efficient, there are some
technical basis and limitations. For example, the given range of magnitudes tabulated for
up to 10 000 return period years and limited observations cause high confidence and
model uncertainty. If a linear regression is correctly specified, all of its assumptions must
be met including the linearity of data, normality of residuals, independence and
homogeneity of residuals. For most of the cases, the data does not simply follow the
linearity assumption, we need to transform their forms to meet the assumptions. Besides,
even though our model for Case 1 has high value of R*, the small size and outliers
happened may influence the model results so that there are a few points not underlying
on the confidence intervals. The biggest difference between the synthetic model and the
regression we fit is the random error term associated with the model, which makes the
regression model be a stochastic model. However, the trend of the linear regression is
constant, so that an exact relationship between variables is determined without
considering the random error component. The linear regression model hypothesises a
probabilistic relationship between magnitude and return period.

Case 2a

The hazard frequency/magnitude model here for Case 2 does not have a synthetic model
provided. For the first case, Non-linear regression would be considered to fit the
magnitude vs. return period relationship for Case 2a. A non-linear regression model has
the following general form:

—

Vi=70x+¢
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Where Y is the response variable, x is the independent variable, 6 is the vector of model
parameterthe relationship between x and y through the function f(8,x). and € is the
residual error term.

Case 2a has an exponential form relationship between outcome interest and predictor,
the estimated equation is:

Mangt?udel = —36.9¢~0:000009781+return period; | 37 46

Figure D.6 shows the tabulated/predicted data and the regression model with 95%
confidence interval and prediction interval. There is a narrow range of 95% confidence
band when the return period is below 1 000 years, and there are a few tabulated values
do not fall on the 95% confidence band.

Figure D.6. Magnitude vs return period
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For a non-linear regression model with least squared method also has the same residuals
assumption:

Residuals are approximately independent, homoscedastic and normally distributed with
Zero mean.

Model adequacy assessment approach
Unlike the linear regression, the R? could explain the goodness of fit for a model, R? is

invalid for non-linear regression. To access the goodness of fit for non-linear regression,
this could be done by looking that the correlation between the actual observed values
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and values predicted by a model. A high correlation coefficient (0.99) indicates that
observed and predicted values are very close to each other.

Since the non-linear regression has the same residuals assumption as the linear
regression has, the following Residuals vs. Fitted, normal Q-Q plot, Autocorrelation
plots would check the residual assumption separately.

Figure D.7. Residuals
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Figure D.9. Normal Q-Q plot of standardised residuals
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For the Residual vs Fitted plot, each corresponding residuals from fitted values does not
change a lot between each other, which indicates the assumption of residual
homoscedastic is met. However, it seems like the autocorrelation plot show an increasing

trend. A Runs test was used to determine the autocorrelation exists. The test statistics of
- 2 .
Er where p, = n;\’lnl + 1 is the expected number of runs, g, =
3

Runs test is Z = =

2 2 -N) . . .
% 1s the standard deviation of the number of runs, r is the observed number

of runs, n, is the number of observations below the threshold, n; is the number of
observations above the threshold, and N = ny 4+ n;. A p-value of 0.18 indicates
autocorrelation assumption is not violated. The last graph is normal Q-Q plot with a p-
value (0.27) of Shapiro-Wilk normality test indicates a normality assumption is met.

Results

The following table shows the magnitude prediction for Case 2-1 for the return period

of:

Table D.2. Resulting magnitude prediction for Case 2-1
Return Period (years) 500 5 000 50 000 500 000
Magnitude (metres) Case 1 0.74 2.32 14.83 37.18

Results of assessment

An exponential non-linear regression is a good option to fit the non-linear relationship
between predictors and outcome and to meet the desired condition that the magnitude
would be stabilised when the return period is large enough. However, this technique may
have some technique limitations for Case 2a. First of all, the limited observed values and
their trend corresponding to the return period is dramatically increasing, which makes it
hard to estimate the maximum mean magnitude when the return period is large enough.
Due to the small sample size, a non-significant p-value of runs test could not detect the
residuals autocorrelation issues for our non-linear regression model. The power for our
residual correlation is only 0.52. If we want to achieve our power to 0.8, the sample size
of residuals must be at least 22. Besides, the confidence and prediction intervals for a
return period after 2 500 years has wider bands than those intervals for return period
before 2 500 years. The small sample size with a range of magnitudes is tabulated from
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long-term return periods, which demonstrates a larger uncertainty of a model. In
addition, compared with the log-transformed linear regression for Case 1, exponential
non-linear regression has larger predictions for the long-term return period, but has
similar predictions for the short-term return period.

Case 2b

For Case 2b, a simple linear regression with the Cochrane-Orcutt Procedure would be
considered. The estimated equation is:

Magnitude; = 0.586522 + 0.000339738(retur period;)

The Cochrane-Orcutt Procedure could adjust the serial correlation of errors for a linear
regression model. The residuals generated from the simple linear regression is first-order
autoregressive structure based on the following two graphs, which could be written as
€ = p€r_1+ €, |pl <1, and the model could be transformed as y, — py;_; =
a(l—p)+ X — pXe-1) + €.

Figure D.10. Series redis(mod) [1:26]
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Figure D.11. Series redis(mod) [1:26]
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The coefficient of determination is 0.9994, which means 99.94% of the uncertainty in
the predicted values can be explained by the linear regression model. Figure D.12 shows
the tabulated/predicted data and the regression model. It seems like a few points do not
fall into the 95% confidence band.
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Figure D.12. Return period vs mean magnitude
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The following figures are diagnostic plots for the regression model.

The first plot is residuals vs. fitted values. In this plot, it seems like the line has some
patterns shown below. However, each of corresponding residuals from each fitted value
only changes a very small range, which means no large variance between the fitted
values and tabulated values. The second graph, the normal Q-Q plot, noticed that the
first and the last residuals do not follow the referenced dashed line. The last figure is
checking the residuals correlation assumption. There is no trend shown on this graph.
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Figure D.13. Residuals versus fitted
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Figure D.15. Autocorrelation
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Results

The following table shows the magnitude prediction for Case 2b for the return period of:

Table D.3. Resulting magnitude prediction for Case 2b

“Return Period (years) 500 5000 50 000 500 000
Magnitude (metres) 0.75 2.28 17.57 170.46
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Results of assessment

Although this simple regression with the Cochrane-Orcutt Procedure solved the residuals
correlation issue, the prediction of magnitude has larger differences for long-term
periods compared with other cases, and the normality assumption is violated due to the
first and the last residuals points. If the sample size is small, the Type I error rates will
not be far from the target significance level, but the non-normality residuals would
generate the inaccurate prediction interval. Besides, the model could not obtain an ideal
and stabilised estimated magnitude for a long time period. If we could have more
observations, especially for long time-period, we could probably estimate a model for
ideal conditions.

Case 2c

The hazard frequency/magnitude model here for Case 2¢ has the estimation of the
uncertainty on the magnitude for long time intervals. However, the uncertainty of short
time intervals has not been provided for Case 2c. Therefore, the first step is using simple
linear regression to simulate those unknown uncertainties for short time intervals. Based
on the known mean magnitude, the standard deviation, 5™ percentile and 95™ percentile
values for long time intervals used three different linear regression models to estimate
the coefficient of relationship between the mean magnitude and those uncertainty
characteristics. A complete table is shown below:

Table D.4. Benchmark data provided for Case 2-3

Return Period (years) 1 2 5 10 50 100 500 | 1000 3000 10000

Magnitude (metres) Mean = 053 0.53 0.54 0.55 0.59 0.62 0.79 | 0.95 1.6 4.0
SDev | 0.0067 | 0.00677 | 0.00808 | 0.00939 & 0.01462 @ 0.01854 | 0.04 0.06 015 046
5th 0508 | 05082 | 0.5160 | 0.5237 | 0.5546 057787 072 085 | 1.3 3.2
95th | 0.5564 = 0.5564 | 0.5683 | 0.5803 | 0.6279 | 0.66376 @ 0.85 1.1 1.8 47

To create the predictive model based on the return period and the uncertainty of mean
magnitude characteristics, the standard deviation, and the 5™ and 95™ percentile values,
the multicollinearity of those predictors is a big issue. A principal component analysis is
to find a new linear combination of those variables that contains much information by
looking at the highest variance. The new variables derived by the principal component
analysis are orthogonal, where the first axis contains the most information, and the
second axis contains the second most information, and so forth. The following plot
shows that only one component explains around 93% variance, and two components
explain around 99% variance in the data set.
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Figure D.16. Principal component analysis results
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The next step is to regress the response variable mean magnitude in a set of principal
components obtained from the return period, standard deviation, and 5% and 95™
percentiles values of the mean magnitude. The principal component regression with a
few components often could explain most of the variability of all predictors and
consequently with a relationship with outcome interest. The first component from the
principal component analysis would be considered to be used in the regression model,
and a polynomial term of the first component would be added in order to meet the
normality assumption. The principal components regression model for Case 2c has the
following form:

log (Magnitdue;) = 1.04862 + 1.56278PC; — 0.18800PC;>

The coefficient of determination RZ = 0.9862R* = 0.9996, which means 98.62% of
the uncertainty in the predicted values can be explained by the squared regression model.
Besides, F-statistics (428.7) and significant p-value (<0.05) points out the model
provides better fit than the null model.

Figure D.17 shows the tabulated/predicted data and the regression model. Predicted
values for long time periods could not fall into the 95% confidence interval but fall into
the prediction interval.
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Figure D.17. Return period versus mean magnitude

colour
® predicted valuaes

® tabulated values

Magnitude Mean Values

Return Period

Since principal component regression still uses the linear regression to predict the
response variable by using the components as predictors, residuals vs. fitted and normal
Q-Q plots could be utilised to check the residuals’ homoscedasticity and normality
assumption. Another Durbin Watson test would check the measurement of
autocorrelation in residuals from regression model. The test statistic is DW =
Sioa(ee= ee-1)?
g ef

shown below:

, where the e; are residuals. Diagnostic plots for the regression model are

Figure D.18. Residuals versus fitted
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Figure D.19. Normal Q-Q
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For the residuals vs. fitted values plot, it seems like the line has some patterns shown
between fitted values and residuals. However, residual values do not change a lot
between each other, which means there are small variances between the fitted values and
tabulated values. For the normal Q-Q plot, a few residuals points do not completely
follow the referenced dashed line. Using the Shapiro-Wilk test again to ensure the
normality assumption test, a p-value with 0.18 (>0.05) suggests that the null hypothesis
of normality assumption could not be rejected. Besides, the Durbin Watson test with p-
value 0.09 also indicates the autocorrelation assumption is not violated.

Results

The following table shows the magnitude prediction for Case 2-3 for return periods of:

Table D.S. Resulting magnitude prediction for Case 2-3

Return Period (years) 500 5000 50000 500 000
Magnitude (metres) Case 1 0.71 2.01 13.75 37.09

Results of assessment

This principal component regression has a few technical limitations and uncertainties.
First, the uncertainty of mean magnitude for a short time interval has not been provided
in the table, even though the unknown standard deviation of each mean magnitude is
small. In order to estimate the standard deviation, the 5™ and 9" percentile of mean
magnitude, an imputation has to utilised, which produced some uncertainty for those
imputed values. To co-operate that uncertainty and return period, we used the principal
component regression that only one component of those combinations represents 93%
of variances in the dataset, inducing larger uncertainty in our model. Compared with the
results estimation obtained from Case 2a, we noticed that the confidence and prediction
intervals for Case 2¢ are all wider than those for Case 2a. Model fitting also does not
perform well when there is a long time return period so that the predicted values do not
fall into the 95% confidence interval. Besides, this principal component regression
model could not meet the expected condition that the mean magnitude would keep
increasing as the return period increases.
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Annex E. Submission by IRSN

E.1.1. Case 1 — Known model producing the synthetic data

Table 1. The synthetic model (SM-Casel): 3
Synthetic data M =0.5+0.5xlog,, (axt)

for Case 1

t M The synthetic model serves as surrogate for a = ol
1 0.50 complex phenomenological process. %
2 0.65 Inputs: 3
5 0.85 Return time intervals (or periods) t; g’ N
10 1.00 Outputs:

50 1.40 M

100 1.50 Magnitude for an annual maxima (AM)

500 1.90 event. Variable ¢ equal to 1 in casl: | ‘ | | ‘
1000 2.00 0 2500 5000 7500 10000
2000 2.20 M =0.5+0.5%log,, (t) )- Return period (years)

10000 2.50 Figure 1. Hazard curve (SM-Casel).

Benchmark completion: Provide, using the data for Case 1, a model that best describes
the frequency/magnitude relationship and the associated analysis and insights.

The randomness, homogeneity and stationarity of data are necessary conditions to
conduct a frequency analysis. As a magnitude M produced by the synthetic model is
supposed to be for annual maxima (AM) events (mean rate of events A =1, this parameter
gives the number of events per year), the hypothetical data set should be independent.
They should also be homogeneous since the magnitudes are produced by one synthetic
model (the same statistical population). The sample size is a prerequisite for a frequency
analysis, as well. This last-mentioned condition can be very easily satisfied since we
know the synthetic model producing the data (we can produce as much data as
necessary).

Assumption 1: The magnitudes are assumed to be stationary,
independent and homogeneous.

As mentioned earlier, a magnitude M is produced by the synthetic model with a rate
of events equal to one (A =1). Return periods can then be estimated with one of the two
following frequency models:
1. An annual maxima (AM) frequency model in which the distribution of the AM
events converges to a GEV one.

2. A Peaks-Over-Threshold (POT) model in which the distribution of the
exceedances over the threshold U converges to an exponential one (of

parameter O ).
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Let X; be the event with the return period 7" and F the non-exceedance probability

function. In its general definition, X7 corresponds to the quantile of probability of

exceedance equal to 1/” (i.e. equal to 1/T whenl=1): pr(x > x, )= F(x,) = /AT (F is
the survival function).

In the 1st case (SM-Casel), a set of 100 return periods is randomly sampled. Associated
magnitudes are calculated with the synthetic model and a classic frequency estimation
is then performed with a GEV distribution. To take this issue one step further, a simple
analogy of the synthetic model with GEV and GP distribution functions is performed.

1. AM/GEYV frequency model:

The GEV distribution is the limiting distribution for the AM of independent and
identically distributed (iid) random variables.

(o]

F(x)z e =0
e ’ £=0

Where £, 0>0 and é: are the location, scale and shape parameters, respectively. A

sample of 100 magnitudes (AM events with an effective duration equal to 100 years) is
generated and analysed. The hypothetical observational data set (from a synthetic model)
is selected in such a way that their empirical distribution looks as natural as possible
(close to the natural behaviour and variability of external hazards such as floods, extreme
temperatures or high winds, etc.). More concretely, the sampling is done as follows: the
R “sample” function is used to randomly sample 100 values of “return times” ! from 1
to 100 years. In all, 95 values have empirical return periods less than 100 years. It is
worth noting that the case with aleatory sampling in a period of 10 000 years is not
realistic and cannot represent natural hazards.

library ("evd")

library ("ggplot2")

# Hypothetical data from synthetic model

# A sample of 100 AM in which the 100-year return level was not exceeded
w <- 100

ttl <- sample(1:100, size=w, replace=TRUE);

xt <- round(0.5+0.5* (loglO(ttl)),2)

# Plotting positions - empirical probabilities (Weibul)
Px <- l:length(xt)/ (length (xt)+1)

# associated empirical return periods

Tx <- 1/ (1-Px)

# Theoretical fitting

fit.GEV <- fevd(xt, type="GEV")

# Estimated parameters: # location scale shape

# 1.2589728 0.1924330 -0.2943914

ttic <- ¢(1.25, 1.5, 2, 3, 5, 10, 20, 50, 100, 500, 1000, 2000, 3000)

RLs <- ci(fit.GEV, type = "return.level", return.period=ttic, method =

"normal"™, alpha=0.30)
Plot the fitting . . .
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datal <- data.frame(xx = Tx, yy = sort(xt))

data2 <- data.frame(xxx = ttic, yyy = RLs [,2])

data3 <- data.frame (xxxx = ttic, 1b RLs [,11)

datad4 <- data.frame (xxxx = ttic, ub = RLs [,3])

sp <- ggplot(data.frame ("pp"=NULL, "tf"=NULL))

sp + geom point (aes (x=datal$xx, y=datal$yy, colour="PPcol" )) +

geom_ line (aes (data2$xxx, data28yyy,colour="Fitcol",linetype="Fitlinel")) +

geom_ line (aes (data3$xxxx, data3$lb, colour="ICcol", linetype="Fitline2"))+
+

geom_line (aes (data4$xxxx,datad4Sub,colour = "ICcol",linetype="Fitline2"))
scale color manual ("", labels = @ (=AM "Fit", "IC70%"),breaks=c("PPcol",
"Fitcol","ICcol"),values=c("black","black","black™)) +
scale linetype manual ("",breaks = c("fitlinel","fitline2"),
values = c("solid","longdash")) +
guides (fill = guide legend(order = 1), colour = guide legend(order = 2, keywidth =
2.5, override.aes = list(linetype = c("blank", "solid", "longdash"),
shape=c(16,NA,NA)))) +
scale x 1ogl0 (breaks=c(10, 100, 500, 1000), labels=as.character(c(10, 100, 500,
1000)), name = "Return period (years)") +
scale y continuous(name = "Magnitude (m)", limits = c(0,2)) +
ggtitle ("Fitting with a GEV distribution (AM data)") +
theme (
plot.title = element text(color = "Black", size=10, face = "bold.italic"))

The fitting is bounded to a final value equal to 4 =0 / Zj (equal to 1.91 m). The 500 000-

year return level is equal to this end value (1.90 m) which is much lower than the 3.35 m
calculated with the synthetic model for the same return period. Paradoxically, it can be
seen from Figure E.1 that the adequacy of the GEV distribution is quite good and the
uncertainty (in term of confidence intervals) is very low for high return levels.

Figure E.1. Fitting with a GEV distribution with the SM-Casel data sets (,u =126,0=0.19;¢ = _0'29)
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The GEV distribution combines three distributions, identified by Fisher and Tippet
(1928) into a single form. Indeed, depending on the value of the shape parameter (f , the

GEV can take the form of the Gumbel (é: :0), Fréchet (f >0) or the Reverse Weibull

distributions (5 <0 ). On the other hand, and as mentioned earlier in this section, the scale
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parameter of the GEV distribution should be positive ( 0 > ). The probability and
quantile functions for the GEV distribution can be written as:

A linear relationship between magnitudes M and the ,[Hgﬂj%
logarithm of return periods I could be obtained if the x- F(x)= efef(r.o/ﬁ 5#0
axis was plotted in a logarithmic scale. Note that this € =0
linear relationship cannot be obtained with all the xpzu—g[l—{—log(l— F)}fﬂ
asymptotic extreme value distributions and only the §

exponential form (the Gumbel distribution) might be
suitable (but with the limitation of bad fitting of small
magnitudes associated to small return periods up to 50-
100 years).

As can be seen from the probability equation, the GEV distribution can as well have the
form of the synthetic model when the shape parameter is equal to -1. With such a value,
the theoretical upper tail can only be finite and bounded (as may be useful for estimates
of specific cases of extreme values which may have an upper bound, as is the case here).
This hypothesis is in line with the bounded theoretical fitting presented in Figure E.1.

Xy :p+0[1+log(l—F)] - X :p+c+010g(%j — x, =p+o—oclog(T)

x; =p+o—clog(10)xlog,, (T)
This last equation is similar to the proposed synthetic model as follows:

Frequency model —> x. =pn+o — clog(10) xlog, (T) { 05
! 1ot - ' ’ n+oc=0.5

1\ 1\ - | olog(10)=-05

Syntheticmodel ——= ;. _ 5 . 0.5 x log,, (1)

It can be concluded from these two conditions that, with a shape parameter equal to -1,
the scale parameter can only be negative. As just noted, a GEV distribution obviously
cannot be used with a negative scale parameter: then it cannot describe the
frequency/magnitude relationship for the SM-Casel.

2. The POT GPD/Exponential frequency model:

The GP distribution for the return levels (with an exponential distribution for the
exceedances over the threshold 2 ). The exceedances over the threshold ¥ follow an
exponential distribution of parameter P .

E{(X)zl—exp[—p(x—u)]

1 1 1 1
—u=——log(1-F =u——log| — =u+—log(AT
X, —u ; og(1-F) > x, =u . og(ij—ncT u+p og(AT)

T - year
Therefore, the y return level can be written as:

% =t SIn(h)+ Llog(10)log, (T)
p p
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This last equation is similar to the proposed synthetic model as follows:

1 1
Frequency model —> ¥ = u+=In(%) + =log(10) xlog,(T)
q y | p .| |p .| . [”_l]n(;‘]—O.S
1 0 =) "
Synthetic model —= ;5 _ 5 05 xlog, () Elog(lO):Oﬁ

Considering the case in which the rate of events is equal to one (1=1), the first condition
gives a thresholdu =0.5. It can also be easily concluded from the second condition that
p =1og(10)/0.5=4.605 .

Assumption 2: The number of events is randomly sampled
following a Poisson Process. It is also assumed that the rate of
events is equal to 1.

In the first step, the developed frequency model is used to describe the
frequency/magnitude relationship. Magnitudes are then sampled on a period of time W
, say 100 years.

set.seed (1248)

effective duration

<- 100

Threshold

<- 0.5

annual rate of events

lambda <- 1

# Parameter of the exponential distribution

rho <- log(10)/0.5

# Assuming the NPr¢ of arrivals happen randomly following a Poisson Process
N <- rpois(n = 1, lambda = lambda * w)

# Return levels (exceedances follow an exponential distribution)
xt <- u + rexp(n = N, rate = rho)

H o H 5

In the next step, the fitting with the theoretical distribution (exponential) is performed.
The fitting of the SM-Casel data set (w=100 years) with a GPD distribution (

u=05& }*:1) for the return levels (the exceedances over U are exponential) is

presented in Figure E.2. The results are also shown in Table E.1. A good and visually
adequate fitting is obtained. Indeed, all the observed probabilities are in the 70%
confidence interval. As shown in Table E.1, the 500 000-year return level is equal to
3.19 m which is close to the 3.35 m calculated by the synthetic model for the same return
period. On the other hand, the uncertainty (in term of confidence intervals) is reasonably
low for high return levels. All the simulations were carried out within the R environment
(open-source software for statistical computing: http://www.r-project.org/). The Renext
library (IRSN and Alpstat, 2013), developed by the French Institute for Radiological
Protection and Nuclear Safety, was used for frequency estimations. The Renext package
was specifically developed for flood frequency analyses using the POT method.

library ("Renext")
library ("ggplot2")

fit.exp <- Renouv(xt, effDuration = w, distname.y =
"exponential", threshold = u,
Tlim= c(1, 10000), pct.conf = 70,

plot = TRUE)

BENCHMARK ON EXTERNAL EVENTS HAZARD FREQUENCY AND MAGNITUDE STATISTICAL MODELLING


http://www.r-project.org/

122 | NEA/CSNI/R(2021)10

Figure E.2. Fitting of the SM-Casel data sets (w=100 years) with GPD distribution (u = 0.5& A = 1) for

u

the return levels (the exceedances over are exponential).

The exceedances over the threshold follow an Exponential distribution
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Table E.1. Comparison of magnitudes (m) calculated with the synthetic data for Case 1. The values in
brackets correspond to the 70% confidence intervals.

Return Period (years) 500 5000 50000 500 000
Synthetic data for Case 1 1.85 2.35 2.85 3.35
POT model (GPD/Exp) 1.78 (1.66-1.92) | 2.25(2.08-2.45) | 2.72(2.51-2.98) | 3.19 (2.94-3.50)

3. Case 1 — Conclusion

In this first case, both the hypothetical data and the synthetic model are known. It can be
concluded that the GEV distribution is not very suitable to describe all the
frequency/magnitude relationships for the SM-Casel data. These data are best described
with a POT frequency model in which the distribution of the return levels converges to
a GPD (threshold equal to 0.5 and rate of events equal to 1) with an exponential
behaviour of the exceedances over the threshold. Indeed, the desired high return levels
are estimated with this frequency model and compared to the hypothetical observational
data from the synthetic model. The relative difference in magnitudes did not exceed 5%
(7 cm, 10 cm, 13 cm and 16 cm for the 500-, 5 000-, 50 000- and 500 000 year return
levels, respectively). Moreover, all the plotting positions are inside the confidence
interval despite the fact that the latter is very narrow (low uncertainty).
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E1.2. Case 2 — Unknown model producing the synthetic data

For Case 2, there is no synthetic model provided. Furthermore, three parts to this
example are provided.

Case 2(a): provides the synthetic data (10 data points) with no uncertainty provided;

Case 2(b): provides additional synthetic data (26 data points) with no uncertainty
provided;

Case 2(c): provides the synthetic data (10 data points) with uncertainty estimates on
some of the data.

We need to provide, using the data for Case 2, a model that best describes the
frequency/magnitude relationship and the associated analysis and insights.

Non-linear least-squares estimates of the distribution parameters are performed using the
“nls” R function. Confidence intervals are then calculated and plotted. The same
assumptions are used for this second case.

Assumption 1: The magnitudes are assumed to be stationary,
independent and homogeneous.

Only parts 2a and 2b are evaluated herein. As in Case 1, return periods can then be
estimated with one of the two following frequency models:

1. The AM/GEV frequency model: Annual maxima (AM) frequency model in
which the distribution of the AM events converges to a GEV one.

2. POT/GPD frequency model: Peaks-Over-Threshold (POT) model in which the
distribution of the exceedances converge to a GPD.

For both Cases 2a and 2b, non-linear least-squares estimates of the GEV and GPD
parameters are performed. It is worth noting that the GPD must give almost the same
parameters and fitting (results not presented hereafter). The fitting with confidence
intervals is presented in Figure E.5 and Figure E.8. The adequacy of the theoretical
distribution in both Cases 2a and 2b is visually quite good with heavy tails (very high
shape parameter {~0.96 ). A comparison of T-year return levels (corresponding to 500-,
5 000-, 50 000- and 500 000-year return periods) for both Case 2a and Case 2b are
presented in Table E.2 (the values in brackets correspond to the absolute and relative
widths of the 70% confidence intervals). The results in Table E.2 indicate that the
relative widths of confidence intervals in Case 2b (with 26 synthetic data points) are
1.5 times narrower than those obtained in Case 2a (with 10 synthetic data points) for the
GEV distribution.

Table E.2. The T-year quantiles with absolute and relative widths of their 70% confidence intervals

Return  Period 500 5000 50 000 500 000

(years)

GEV for Case 2-a.  0.75(0.68-0.84) 2.32 (1.72-3.21) 16.79 (10 75-26.44) 150.34 (89.35-254.16)
(21.3%) (64.2%) (93.4%) (109.6%)

GEV for Case 2-b.  0.76 (0.71-0.82) 2.31(1.88-2.87) 16.50 (12.17-22.46) 146.53 (102.70-209.56)
(14.5%) (42.8%) (62.4%) (73.0%)

BENCHMARK ON EXTERNAL EVENTS HAZARD FREQUENCY AND MAGNITUDE STATISTICAL MODELLING



124 | NEA/CSNI/R(2021)10

Cases 2a and 2b — Conclusion

In these two cases, only the synthetic data are known (no synthetic model provided). It
can be concluded that both the MA/GEV and POT/GP distributions best describe the
magnitude/frequency relationship with heavy tails (very high shape parameter, then
there is no physical limit!). On the other hand, as more data are provided in Case 2b, the
confidence intervals are narrower (reduced uncertainty).

It is obvious that, with such a high shape parameter, these data reflect what can be
observed for natural hazards up to a return period of 1 000 - 10 000 years. Beyond this,
return magnitudes increase much more quickly to very high values. This is the main
characteristic of models with very heavy tails (as is the case here).

Case 2a: the MA/GEYV frequency model:

10 synthetic data points are provided with no uncertainty provided,

# Benchmark on External Events Hazard Frequency and Magnitude #
Statistical Modelling

# Case 2 - Unknown Model Producing the Synthetic Data

library ("evd")

library ("ggplot2")

# Case 2-a synthetic data

t <-c¢(1,2,5,10,50,100,500,1000,3000,10000)

M <- ¢(0.53,0.53,0.54,0.55,0.59,0.62,0.79,0.95, 1.60,4.00)

# Plot data - Hazards curve

gplot (t, M, geom=c ("point", "line"), xlim = c(0, 10000), ylim = c(0.5, 4),
main = "Data (with no synthetic model provided) - Cas2-a", xlab =
"Return period (years)",ylab = "Magnitude (m)")

Table E.3. Synthetic data for Case 2a

t M
1 0.53
2 0.53
5 0.54
10 0.55
50 0.59
100 0.62
500 0.79
1000 0.95
3000 1.57
10 000 3.97
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Figure E.3. Hazard curve (Case 2a synthetic data)
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Figure E.4. Fitting Case 2a synthetic data

Case 2a: Fitting with a GEV distribution

M agnitude (m)

=

10 100 1000 10000
Return period (years)

dfl <- data.frame(t = t, xt = M)

# Fitting with a Non-linear least-squares estimates of the GEV parameters

fit <- nls(xt ~ ggev(l-1/t, loc = mu, scale = sigma, shape = xi), data=dfl[-1,], start
= list(mu = 0.12, sigma = 0.2, xi = 1))

coef (fit)

# mu sigma xi

# 0.5593335970 0.0004576594 0.9649876346

# Plot fitting (code not presented herein)
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Figure E.5. Fitting Case 2a synthetic data (GEV ("~ 0.5593; 0.=0.0005;5 =0.9650 )
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Case 2b: the MA/GEYV frequency model:
26 synthetic data points are provided with no uncertainty provided;

library ("evd")

library ("ggplot2")

# Case 2-b synthetic data

t <-c¢(1,2,5,10,15,20, . . . ,750,1000,3000,10000)

M <- ¢(0.53,0.53,0.54,0.55, . . . ,0.95,1.57,3.97)

# Plot data - Hazards curve

gplot (t, M, geom=c ("point", "line"), xlim = c(0, 10000), ylim =
c(0.5, 4), main = "Data (with no synthetic model provided
- Cas2-b", xlab = "Return period (years)",ylab =

"Magnitude (m)")
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t M
1 0.53
2 0.53
5 0.54
10 0.55
15 0.56
20 0.56
25 0.57
30 0.57
40 0.58
50 0.59
60 0.60
70 0.60
80 0.61
90 0.62
100 0.62
125 0.63
150 0.65
175 0.66
200 0.67
300 0.7
400 0.75
500 0.79
750 0.87
1000 0.95
3000 1.57
10000 3.97

Figure E.6. Hazard curve (Case 2b synthetic data)
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Figure E.7. Fitting the Case 2b synthetic data
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dfl <- data.frame(t = t, xt = M)

# Fitting

fit <- nls(xt ~ ggev(l - 1/t, loc = mu, scale = sigma, shape = xi),
data = df1[-1, 1,
start = list(mu = 0.12, sigma = 0.2, xi = 1))

coef (fit)

# mu sigma x1i

# 0.5707180614 0.0004624945 0.9619867644
# Plot fitting (code ggplot not presented herein)

Figure E.8. Fitting Case 2a synthetic data with a GEV distribution ("~ 0.5709; 6=0.0005,6 = 0'%19)

Case 2b: Fitting with a GEV distribution
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Annex F. Submission by KAERI

Introduction

This benchmark study aims to apply statistical modelling for frequency and magnitude
estimation based on data for external event hazard assessment. Based on the results of this
study, it is believed that an approach to the quantification of external event IEs can be
formulated and evaluated through the application of an effective statistical model. In this
study, analysis was based on two cases that considered benchmarks provided by the OECD
NEA. Each case was given a magnitude according to the return period. Based on this data,
an appropriate statistical model was applied through regression analysis for each case.
Based on the results, the magnitudes of 500, 5000, 50 000, and 500 000 years were
predicted and presented.

Synthetic data analysis

*  Study for Case 1

Table F.1 shows the synthetic data for Case 1 as provided by the OECD NEA. Using
regression analysis, log regression showed appropriate fitting results for the relationship
between magnitude and return period, as shown in Figure F.1.

Table F.1. Synthetic data for Case 1

Return period (years) 1 2 5 10 50 100 500 1000 2000 10 000
Original M (metres) 0.50 0.65 0.85 1.00 1.40 1.50 1.90 2.00 2.20 2.50
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Figure F.1. Log regression fitting
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As a result of the regression analysis on the magnitude of Case 1, the log regression
equation including variables A and B is shown in Eq. (1). The magnitude of the return
period from 1 to 10 000 years was estimated by Eq. (1); Table E.2 compares the values to
the original magnitude values proposed by the OECD NEA.

Case 1: M = 0.2199 * In (x) + 0.5034 (parameters A and B) (1)

Table F.2. Regression results for Case 1

Return period (years) 1 2 5 10 50 100 500 1000 2000 10 000
Original M (metres) 0.50 0.65 0.85 1.00 1.40 1.50 1.90 2.00 2.20 2.50
Log Magnitude (metres) 0.503 0.656 0.857 1.010 1.364 1.516 1.870 2.022 2175 2.529

An error analysis was then performed using the SUMXMY?2 function to verify the
statistical justification of the estimated magnitudes. The SUMXMY?2 function squares and
sums the difference between two corresponding values, and therefore, the closer to 0, the
smaller the error between the two variables, and the more statistically valid the estimation
can be considered. The SUMXMY?2 function is expressed as Eq. (2).

SUMXMY2 = ¥ (x — y)? )

Here, x is the value of the original magnitude, and y is the value of the estimated
magnitude. As a result of error analysis using the SUMXMY?2 function, the sum square
error (SSE) value was calculated as 0.005, which is very close to zero. It was therefore
judged that the estimated magnitude values were very similar to the original values and
valid. However, to minimise SSE and more precisely estimate the magnitude values, a
solver function was used. The target of the SSE value was set to 0, and an optimisation
analysis was performed on parameters A and B of Eq. (1). The results are shown in Table
F.3.
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Table F.3. Optimisation for parameters

Parameter Original SSE_Solver
A 0.2199 0.219861834
B 0.5034 0.503363549

These optimised parameters are then used in the regression equation for Case 1, as shown
in Eq. (3) below. Table F.4 compares the magnitude values estimated by Eq. (3) with those
estimated by Eq. (1) and the original magnitude values.

Case 1: M = 0.219861834 * In (x) + 0.503363549 (parameters A and B) (3)

Table F.4. Comparison of magnitudes

Return period (years) 1 2 5 10 50 100 500 1000 2000 10 000
Original M (metres) 0.500 0.650 0.850 1.000 1.400 1.500 1.900 2.000 2.200 2.500
Log Magnitude (metres) 0.503 0.656 0.857 1.010 1.364 1.516 1.870 2.022 2175 2.529
Optimised 0.503 0.656 0.857 1.010 1.363 1.516 1.870 2.022 2175 2.528

magnitude (metres)

For Case 1, the optimised parameters A and B (Table F.3) were similar to the existing
values. Likewise, the SSE value of 0.0049 was also similar to the existing value of 0.005.
Fitting was then performed based on the optimised magnitude values; results are shown in
Figure F.2.

Figure F.2. Fitting result for Case 1
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F.1.1. Case 1 result assessment

The results of the optimised fit for Case 1 were estimated to be similar to the size values
presented by the OECD NEA. The trend lines calculated from the estimated magnitude
values (Figure F.1 and Figure F.2) were also similarly estimated. Therefore, it can be
judged that the fitting result for Case 1 in this study is valid. Additionally, based on the
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regression analysis estimates in Case 1, magnitude values were predicted for 500, 5 000,
50 000, and 500 000 years return period. The results are presented in Table F.5 and Figure

F.3.
Table F.S5. Magnitude prediction by return period (Case 1)
Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 1 Exact 1.9 24 29 34
Log KAERI mean (metres) 1.870 2.376 2.883 3.389
Optimised KAERI mean (metres) 1.870 2.376 2.882 3.388
Figure F.3. Magnitude prediction fitting for Case 1
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F.1.2. Study for Case 2

Table F.6 shows the synthetic data for Case 2 provided by the OECD NEA. In this case,
regression analysis found linear regression to give the best fit between magnitude and
return period, as shown in Figure F.4.

Table F.6. Synthetic data for Case 2

Return Period (years) 1 2 5 10 50 100 500 1000 3000 10 000
Original M (metres) 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.60 4.00
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Figure F.4. Linear regression fitting
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Equation (4) below is the linear regression equation including variables A and B as a result
of the regression analysis on the magnitude of Case 2. Magnitudes of return periods from
1 to 10 000 years were estimated by Eq. (4) and compared to the values of the original
magnitude proposed by the OECD NEA (Table F.7). In addition, 95% and 5% confidence
interval magnitude provided by the OECD NEA are also given in Table F.7, with fitting
results plotted in Figure F.5.

Case 2: M = 0.0003 * x + 0.5651 (parameters Aand B) (4)

Table F.7. Regression results for Case 2

Return period (years) 1 2 5 10 50 100 500 1000 3000 10 000
Original M (metres) 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.60 4.00
Linear Magnitude (metres) 0.565 0.566 0.567 0.568 0.580 0.595 0.715 0.865 1.465 3.565
Original M 95% (metres) — — — — — — 0.85 1.1 1.8 47
Original M 5% (metres) — — — — — — 0.72 0.85 1.3 32
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Figure F.5. Linear regression fitting according to confidence interval
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As a result of the regression analysis, the estimated magnitude values fell within the
confidence interval and cannot be judged as inappropriate. The estimated magnitude for
the initial return period was similar to those proposed by the OECD NEA. However, as the
return period increases, errors in the magnitude values were found to occur. Error analysis
in this case using the SUMXMY?2 function gave an SSE value of 0.22443. In order to
minimise this error in Case 2, the solver function was used, where again the target of the
SSE value was set to 0 and an optimisation analysis was performed on parameters A and B
from Eq. (4). The results are shown in Table F.8.

Table F.8. Optimisation for parameters

Parameter Original SSE_Solver
A 0.0003 0.000344252
B 0.5651 0.565051348

Based on the optimised parameters, linear regression analysis for Case 2 was re-estimated
via Eq. (5). Table F.9 compares the magnitude values from the three sources [original, Eq.
(4), and Eq. (5)] along with the confidence intervals.

Case 1: M = 0.000344252 * x + 0.565051348 (Parameters Aand B) (5)

Table F.9. Compare for magnitude

Return period (years) 1 2 5 10 50 100 500 1000 2000 10 000
Original M (metres) 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4
Linear 0.565 0.566 0.567 0.568 0.58 0.595 0.715 0.865 1.465 3.565
Magnitude (metres)

Optimised 0.565 0.566 0.567 0.568 0.582 0.599 0.737 0.909 1.598 4,008
magnitude (metres)

Original M 95% (metres) — — — — — — 0.85 1.1 1.8 47
Original M 5% (metres) — — — — — — 0.72 0.85 1.3 3.2
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In Case 2, the SSE of the optimised model was calculated to be 0.01. Accordingly, it was
judged that the parameters A and B were significantly improved compared to the existing
parameters. Fitting was then performed based on the optimised magnitude values. The
results are shown in Figure F.6.

Figure F.6. Fitting result for Case 2
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F.1.3. Case 2 result assessment

It was found that when the optimisation technique was applied to Case 2, the model
performance further improved, as seen in Figure F.5. In other words, the optimised fitting
was able to estimate values similar to the magnitude values proposed by the OECD NEA.
Comparing Figure F.4 and Figure F.5, the trend lines calculated from the estimated
magnitude values were also similarly estimated. Therefore, like Case 1, it can be judged
that the fitting result for Case 2 in this study is valid.

Then, based on the regression analysis estimates in Case 2, magnitude values for return
periods of 500, 5 000, 50 000, and 500 000 years were predicted. The results are shown in
Table F.10 and Figure F.7.

Table F.10. Magnitude prediction by return period (Case 2)

Return period (years) 500 5000 50 000 500 000
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000

Linear KAERI mean (metres) 0.715 2.065 15.565 150.565
Optimised KAERI mean (metres) 0.737 2.286 17.778 172.691
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Figure F.7. Magnitude prediction fitting for Case 2
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Conclusion

In this study, statistical analysis was applied to the estimation of two cases presented by
the OECD. In any statistical analysis, it is important to understand the characteristics of the
data set. For the given problems here, the range of the return period was 10—10 000 years,
while that of the magnitude was only 0.4-5.0 metres. Therefore, the coefficient of the
synthetic model had a great influence on the analysis results. This study demonstrates that
employing the full extent of the significant figures is important to handle the different
ranges of data values. In the future, it is expected that data-based statistical values can be
better estimated through various verified statistical models.
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